314 research outputs found

    Lookahead Pathology in Monte-Carlo Tree Search

    Full text link
    Monte-Carlo Tree Search (MCTS) is an adversarial search paradigm that first found prominence with its success in the domain of computer Go. Early theoretical work established the game-theoretic soundness and convergence bounds for Upper Confidence bounds applied to Trees (UCT), the most popular instantiation of MCTS; however, there remain notable gaps in our understanding of how UCT behaves in practice. In this work, we address one such gap by considering the question of whether UCT can exhibit lookahead pathology -- a paradoxical phenomenon first observed in Minimax search where greater search effort leads to worse decision-making. We introduce a novel family of synthetic games that offer rich modeling possibilities while remaining amenable to mathematical analysis. Our theoretical and experimental results suggest that UCT is indeed susceptible to pathological behavior in a range of games drawn from this family

    Direct measurement of molecular stiffness and damping in confined water layers

    Get PDF
    We present {\em direct} and {\em linear} measurements of the normal stiffness and damping of a confined, few molecule thick water layer. The measurements were obtained by use of a small amplitude (0.36 A˚\textrm{\AA}), off-resonance Atomic Force Microscopy (AFM) technique. We measured stiffness and damping oscillations revealing up to 7 layers separated by 2.56 ±\pm 0.20 A˚\textrm{\AA}. Relaxation times could also be calculated and were found to indicate a significant slow-down of the dynamics of the system as the confining separation was reduced. We found that the dynamics of the system is determined not only by the interfacial pressure, but more significantly by solvation effects which depend on the exact separation of tip and surface. Thus ` solidification\rq seems to not be merely a result of pressure and confinement, but depends strongly on how commensurate the confining cavity is with the molecule size. We were able to model the results by starting from the simple assumption that the relaxation time depends linearly on the film stiffness.Comment: 7 pages, 6 figures, will be submitted to PR

    On the Complexity Landscape of Connected f-Factor Problems

    Get PDF
    Given an n-vertex graph G and a function f:V(G) -> {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon<1; on the other side of the spectrum, the problem was known to be polynomial-time solvable when f(v) is at least n/3 for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restricting the function f. In particular, we show that when f(v) is required to be at least n/(log n)^c, the problem can be solved in quasi-polynomial time in general and in randomized polynomial time if c 1, the problem is NP-intermediate

    Fermionic representations for characters of M(3,t), M(4,5), M(5,6) and M(6,7) minimal models and related Rogers-Ramanujan type and dilogarithm identities

    Full text link
    Characters and linear combinations of characters that admit a fermionic sum representation as well as a factorized form are considered for some minimal Virasoro models. As a consequence, various Rogers-Ramanujan type identities are obtained. Dilogarithm identities producing corresponding effective central charges and secondary effective central charges are derived. Several ways of constructing more general fermionic representations are discussed.Comment: 14 pages, LaTex; minor correction

    An Algebraic Construction of Generalized Coherent States for Shape-Invariant Potentials

    Full text link
    Generalized coherent states for shape invariant potentials are constructed using an algebraic approach based on supersymmetric quantum mechanics. We show this generalized formalism is able to: a) supply the essential requirements necessary to establish a connection between classical and quantum formulations of a given system (continuity of labeling, resolution of unity, temporal stability, and action identity); b) reproduce results already known for shape-invariant systems, like harmonic oscillator, double anharmonic, Poschl-Teller and self-similar potentials and; c) point to a formalism that provides an unified description of the different kind of coherent states for quantum systems.Comment: 14 pages of REVTE

    Completeness of Coherent States Associated with Self-Similar Potentials and Ramanujan's Integral Extension of the Beta Function

    Full text link
    A decomposition of identity is given as a complex integral over the coherent states associated with a class of shape-invariant self-similar potentials. There is a remarkable connection between these coherent states and Ramanujan's integral extension of the beta function.Comment: 9 pages of Late

    What We Don't Know about BTZ Black Hole Entropy

    Get PDF
    With the recent discovery that many aspects of black hole thermodynamics can be effectively reduced to problems in three spacetime dimensions, it has become increasingly important to understand the ``statistical mechanics'' of the (2+1)-dimensional black hole of Banados, Teitelboim, and Zanelli (BTZ). Several conformal field theoretic derivations of the BTZ entropy exist, but none is completely satisfactory, and many questions remain open: there is no consensus as to what fields provide the relevant degrees of freedom or where these excitations live. In this paper, I review some of the unresolved problems and suggest avenues for their solution.Comment: 24 pages, LaTeX, no figures; references added, brief discussion of relation to string theory added; to appear in Class. Quant. Gra

    Beyond series expansions: mathematical structures for the susceptibility of the square lattice Ising model

    Full text link
    We first study the properties of the Fuchsian ordinary differential equations for the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)} of the square lattice Ising model susceptibility. An analysis of some mathematical properties of these Fuchsian differential equations is sketched. For instance, we study the factorization properties of the corresponding linear differential operators, and consider the singularities of the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, versus the singularities of the associated Fuchsian ordinary differential equations, which actually exhibit new ``Landau-like'' singularities. We sketch the analysis of the corresponding differential Galois groups. In particular we provide a simple, but efficient, method to calculate the so-called ``connection matrices'' (between two neighboring singularities) and deduce the singular behaviors of χ(3) \chi^{(3)} and χ(4) \chi^{(4)}. We provide a set of comments and speculations on the Fuchsian ordinary differential equations associated with the n n-particle contributions χ(n) \chi^{(n)} and address the problem of the apparent discrepancy between such a holonomic approach and some scaling results deduced from a Painlev\'e oriented approach.Comment: 21 pages Proceedings of the Counting Complexity conferenc
    corecore