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Abstract. A recent trend in parameterized algorithms is the application of polytope tools to
FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). Although this approach has
yielded significant speedups for a range of important problems, it requires the underlying polytope to
have very restrictive properties, including half-integrality and Nemhauser-Trotter-style persistence
properties. To date, these properties are essentially known to hold only for two classes of polytopes,
covering the cases of Vertex Cover (Nemhauser and Trotter, 1975) and Node Multiway Cut
(Garg et al., 1994).

Taking a slightly different approach, we view half-integrality as a discrete relaxation of a problem,
e.g., a relaxation of the search space from {0, 1}V to {0, 1/2, 1}V such that the new problem admits
a polynomial-time exact solution. Using tools from CSP (in particular Thapper and Živný, 2012) to
study the existence of such relaxations, we are able to provide a much broader class of half-integral
polytopes with the required properties.

Our results unify and significantly extend the previously known cases, and yield a range of new
and improved FPT algorithms, including an O∗(|Σ|2k)-time algorithm for node-deletion Unique
Label Cover and an O∗(4k)-time algorithm for Group Feedback Vertex Set where the group is
given by oracle access. The latter result also implies the first single-exponential time FPT algorithm
for Subset Feedback Vertex Set, answering an open question of Cygan et al. (2012). Additionally,
we propose a network-flow-based approach to solve several cases of the relaxation problem. This gives
the first linear-time FPT algorithm to edge-deletion Unique Label Cover.
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1. Introduction. Polytope methods, and methods related to linear and integer
programming in general, have been hugely successful in combinatorial optimisation,
both for deriving exact polynomial-time results and for purposes of approximation
(see, e.g., the book of Schrijver [49]). However, the methods have seen less ap-
plication for questions of getting faster exact (i.e., non-approximate) solutions to
NP-hard problems, at least from a theoretical perspective. (Industrial mixed integer
programming-solvers such as CPLEX, though frequently efficient, are not our concern
here since usually, no non-trivial performance guarantees are known.)

A few such applications have emerged in recent years in the field of parameterized
complexity; specifically, two sets of problems – Node Multiway Cut [17] and prob-
lems related to Vertex Cover [40, 39] – have been shown to be FPT parameterized
by the above LP parameter, i.e., given an instance of one of these problems, it can
be decided in O∗(4p) time whether there is a solution that is at most p points more
expensive than the LP-optimum. In the former case, due to the integrality gap of
the Multiway Cut LP [22], this results in an O∗(2p)-time FPT algorithm for the
natural parameterization of the problem, improving on previous results of O∗(4p); in
the latter case, through parameter-preserving problem reductions, the result is im-
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proved FPT algorithms for a range of problems (e.g., problems expressible in Almost
2-SAT, a.k.a., 2-CNF deletion).

However, despite the promise of the approach (and the programmatic view taken
in the latter set of papers [40, 39]), we still know only few such applications. (Also
note that if the parameter p is taken as the above “gap” parameter, then in general it
would be NP-hard to decide whether p = 0.) Furthermore, an inspection of the tools
used reveal that the methods are quite similar, and very specific; it is a matter of
FPT applications of the half-integrality results of Nemhauser and Trotter [41] in the
latter case, and similar half-integrality results for Node Multiway Cut in the for-
mer case, as shown by Garg et al. [22] and refined for FPT purposes by Guillemot [23]
and Cygan et al. [17]. Therefore, a good first step towards a better understanding of
the power of LP-relaxations for FPT problems (or vice versa, e.g., to further the pa-
rameterized study of mixed integer programming) seems to be to consider specifically
the property of half-integrality.

1.1. Integral and half-integral polytopes. Compared to our knowledge about
integral polytopes (e.g., connections to totally unimodular matrices and the notion
of total dual integrality), our knowledge of half-integrality seems rather more spotty.
It seems that most of what is available can be enumerated as a few quick exam-
ples, e.g., the above-mentioned cases of Vertex Cover [41] and Node Multiway
Cut [22]; Hochbaum’s IP2 programs [24]; and a few related cases, such as the contin-
uous relaxation for Submodular Vertex Cover [28]. Of these, probably the most
ambitious study of half-integrality is the work of Hochbaum [24], where a general IP
of a certain restricted form is shown to admit half-integral solutions. Still, of the
applications mentioned in [24], most if not all (e.g., all applications with a Boolean
domain) can be covered by a simple reduction to Almost 2-SAT. One should also
mention Kolmogorov [36]; see below.

One important note is that half-integrality is more specific than having an in-
tegrality gap of 2. While the latter clearly implies the same approximation result,
half-integrality imposes much more structure on the solutions of a problem (as seen,
e.g., by the FPT applications above and in the rest of this paper). Examples of LP-
relaxations which are 2-approximate but not half-integral would include Multicut
in Trees [21] and Feedback Vertex Set [11]; see also results achieved via itera-
tive rounding [30, 19], e.g., for Steiner Tree. In the present paper, we ignore such
results, and focus on the topic of half-integrality.

In this work, to discover half-integral relaxations, we take a slightly different
approach to the problem from most of the above, inspired rather by the work of Kol-
mogorov [36]. In essence, we start from the observation that a half-integral relaxation,
unlike a generic 2-approximate LP-relaxation, actually defines a polynomial-time solv-
able problem on a discrete search space of {0, 1/2, 1}n. Thus, we argue that the search
for half-integral relaxations, and even for half-integral polytopes, would benefit from
the application of tools designed to characterise exactly solvable problems, e.g., tools
from the study of constraint satisfaction problems.

1.2. CSPs and LP-relaxations. Constraint satisfaction problems (CSPs) make
for a general setting in which the complexity of various problems can be studied in
a systematic way. In the most common setting, one studies generalisations of SAT:
Given a (one-time fixed) set Γ of relation types, what is the complexity of deciding the
satisfiability of a formula which consists of a conjunction of applications of relations
R ∈ Γ? For example, by fixing the domain to be Boolean, and letting Γ contain all
3-clauses, one would encode the problem 3-SAT.
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For optimisation problems, a generalisation of valued CSPs (VCSPs) has been
proposed. Roughly, in this setting, instead of using relations, one fixes a set F of cost
functions; an instance consists of a set of applications of functions fi ∈ F , and the
task is to minimise (or maximise) the sum of the values of the functions in the input.
One particular case (which has been studied extensively in approximation) is when
the cost functions all take values 0 and 1 only, thus encoding a “soft version” of a
constraint; e.g., f(u, v) = [u = v = 0] (taking cost 1 if u = v = 0, cost 0 otherwise)
would be the soft version of a constraint (u ∨ v). (In some approximation literature
the maximisation version of VCSP for such soft versions of constraints is taken as
the definition of the CSP problem itself.) Again, the interest is in identifying which
sets F of cost functions imply polynomial-time solvable versus NP-hard problems, or
more closely what approximation properties the resulting CSP would have.

The use of various relaxations has been of critical importance to the solutions for
these problems. For approximation, the best results have been attained using SDP
relaxations, and Raghavendra [46] showed that assuming the unique games conjec-
ture [35], a particular SDP relaxation achieves the optimal approximation ratio for
every Max CSP problem. However, for the question of whether finding an exact so-
lution is in P or NP-hard, it turns out, somewhat surprisingly, that it suffices to use
a simple LP-relaxation (known as the basic LP, being essentially a simpler version of
the appropriate level in the Sherali-Adams hierarchy).

To be precise, it follows from a sequence of work by Thapper and Živný and by
Kolmogorov [50, 37, 51] that for every set of finite-valued cost functions F , either
the basic LP solves the resulting VCSP exactly, or the VCSP problem is APX-hard.
Thus, despite our excursion into CSPs, the connection to LP-relaxations and polytope
theory remains, in particular as the LP-relaxation remains the only known method of
solving the problem for several of the covered problem classes.

Our application of this framework takes the following shape. Assume an NP-hard
VCSP problem, defined by a class of cost functions F on a finite domain D (i.e., the
search space of the problem is Dn). If our problem has a half-integral LP-relaxation,
then there should also exist a class F ′ of “relaxed” versions of the cost functions,
working in a search space (D′)n (e.g., D′ would be D extended by the half-integral
values), such that F ′ defines a polynomial-time solvable problem. We call such a class
F ′ a discrete relaxation of the original problem, and refer to values from the original
domain D (e.g., {0, 1}) as integral values, and values from D′ \D (e.g., 1⁄2) as relaxed
values. (We also need some technical requirements; see Section 3.)

Assuming that such a discrete relaxation F ′ is found, we may then use an al-
gorithm, akin to the LP-branching algorithms of [17, 40, 39], to solve our original
problem in FPT time, parameterized by the size of the relaxation gap. The connec-
tion to half-integrality lies in the basic LP of the relaxed class F ′; in our examples, F ′
is a half-integral relaxation of F , and the basic LP can be used to construct a simpler
LP-relaxation for the original problem, which then is found to be half-integral.

1.3. Our results. We show that many known half-integrality results, and sev-
eral new ones, can be explained by applying the above framework using the class of
k-submodular functions as discrete relaxations. This includes the above cases of (Sub-
modular Cost) Vertex Cover, Almost 2-SAT, and Node Multiway Cut, as
well as a further generalisation of the first two called Bisubmodular Cost 2-SAT.
In addition, we construct new, possibly unexpected half-integral LP-relaxations for
the Group Feedback Vertex Set and Unique Label Cover problems, leading
to significantly improved FPT algorithms; see below.
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The framework immediately implies an integral LP-formulation of the half-integral
relaxations of the above-mentioned problems (i.e., an integral polytope over a larger
set of variables); however, the resulting formulation has for many problems an in-
conveniently large dimension, preventing it to be used in full generality. To work
around this problem, we construct an alternative, half-integral LP-relaxation with
fewer variables, inspired by the basic LP and the construction in [22].

Unique Label Cover is the problem which lies at the heart of the unique
games conjecture [35], which is of central importance to the field of approximation

algorithms. Previous work by Chitnis et al. [10] gave an O∗(|Σ|O(p2 log p))-time FPT
algorithm for the problem (here, Σ is the label set, and p is the solution cost). Via
our new LP-relaxation, we solve the problem in time O∗(|Σ|2p), for both the edge-
and vertex-deletion versions.

Group Feedback Vertex Set (GFVS) is a powerful generalisation of Feed-
back Vertex Set and Odd Cycle Transversal; we refer to Section 5 and the
cited literature for details. The FPT study of this problem was initiated by Guille-
mot [23]; Cygan et al. [16] showed that the problem is FPT in a very general form
(technically, when the input provides only black-box oracle access to the group), with
a running time of O∗(2O(p log p)). They note that in this general form, GFVS sub-
sumes Subset Feedback Vertex Set, for which an O∗(2O(p log p))-time algorithm
was previously given [18]. They note that their running time seems difficult to im-
prove with their methods, and ask whether their result could be optimal under ETH
(the Exponential-Time Hypothesis [26]).

Using the above-mentioned LP-relaxation, we would get an algorithm only for
the case that the group is given in explicit form (i.e., not as an oracle); in particular,
we would have to limit ourselves to groups of polynomial size. However, many useful
cases of GFVS (including the reductions from Feedback Vertex Set and Subset
Feedback Vertex Set) use exponential-sized groups, and hence require the oracle
form. To cover this case, we provide an alternative LP-relaxation of the problem,
which has an exponential number of constraints, but which can be solved using a
separation oracle. This implies an O∗(4p)-time FPT algorithm for Group Feedback
Vertex Set with group given via oracle access, providing the first single-exponential
FPT algorithms for GFVS and for Subset Feedback Vertex Set, hence answering
the questions of Cygan et al. [16]. The new running times are optimal under ETH.

1.3.1. Linear-time FPT algorithms. As we have described above, the LP-
branching based on discrete relaxations is a promising approach to establish FPT
algorithms and to reduce f(p) part of the running time. However, its poly(n) part is
not so small since it relies on linear programming to solve the relaxations. Reducing
the poly(n) part is also an important task in FPT algorithms. Especially, there
have been many researches on FPT algorithms whose poly(n) part is only linear
(linear-time FPT), e.g., Tree-Width [1] and Crossing Number [33]. Very recently,
linear-time FPT algorithms for Almost 2-SAT have been developed independently
by Ramanujan and Saurabh [47], and Iwata, Oka and Yoshida [29]. The idea of the
algorithm by Iwata et al. is to reduce the computation of LP relaxation to a minimum
cut, and actually, this approach works for solving several of our relaxation problems.
This approach generalise the linear-time FPT algorithm for Almost 2-SAT and
gives the first linear-time FPT algorithm for edge-deletion Unique Label Cover
that runs in O(|Σ|2pm) time. Thus the LP-branching based on discrete relaxations
has a potential to reduce both f(p) and poly(n) simultaneously.
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1.4. Related work. Hochbaum [24] gave a general framework for half-integral
relaxations of certain optimisation problems (as discussed above), via a form of inte-
ger program called IP2 (which in turn is solved via relaxation to a polynomial-time
solvable problem class called monotone IP2). Without going into too much technical
detail, we note that monotone IP2s are covered in a VCSP framework by problems
submodular on a chain [32, 27, 48], and that the Boolean-domain case of IP2 re-
duces directly to Almost 2-SAT, a.k.a. 2-CNF Deletion. However, we have
not reconstructed a direct VCSP interpretation of the full case of half-integral IP2.
Hochbaum [24] asks in her paper whether the problems of Node Multiway Cut and
Multicut on Trees can be brought into her framework; the problem of Multicut
on Trees remains open to us.

Kolmogorov [36] gave close connections between functions with half-integral min-
ima and bisubmodular functions, in particular showing that bisubmodular functions
correspond (in a certain sense) to a class of (continuous-domain) functions referred to
as totally half-integral. See Section 3.1 for more details.

Submodular and bisubmodular functions also occur as rank functions of, respec-
tively, matroids [42] and delta-matroids [2]; there are also connections to polytope
theory (e.g., [7]). Similar, but less well-explored connections exist for k-submodular
functions; see the theory of multi-matroids [3, 4, 6, 5], and the polytope connection
given by Huber and Kolmogorov [25].

Group-labelled graphs (as in Group Feedback Vertex Set) and bijection-
labelled graphs (as in Unique Label Cover) have been explored from a graph-theory
perspective, in particular with respect to path-packing; see [12, 13, 34] and [43, 44].

2. Preliminaries.

2.1. Valued CSPs. Let D be a fixed, finite domain. A cost function on D (of
arity r) is a function f : Dr → R. A valued constraint is an application f(v1, . . . , vr) of
a cost function f : Dr → R to a tuple of variables (v1, . . . , vr). For simplicity, we dis-
allow repeated variables in constraints; this will make no difference for our results but
will simplify some notation. A valued CSP instance (VCSP instance) is defined by a
set V of variables and a list of valued constraints f1(v1,1, . . . , v1,r1), . . . , fm(vm,1, . . . , vm,rm),
where vi,j ∈ V for each i, j; given an assignment φ : V → D and a VCSP instance
I, we define the total cost of φ for I as fI(φ) =

∑m
i=1 fi(φ(vi,1), . . . , φ(vi,ri)). Given

a (not necessarily finite) set F of cost functions on domain D, the valued CSP prob-
lem VCSP(F) is the following problem: given a VCSP instance I on variable set V ,
where every cost function fi is contained in F , and a number p, find an assignment
φ : V → D such that fI(φ) ≤ p.

A crisp constraint is one which cannot be broken (e.g., of infinite or prohibitive
cost). Given a relation R, let the soft version of R denote the valued constraint such
that f(X) = 0 if R(X) holds, and f(X) = 1 otherwise.

We will be most interested in the class of k-submodular functions, defined as
follows. Fix a domain D = {0, 1, . . . , k}, and let u,t be symmetric, idempotent
operations such that 0 u x = 0 for any x ∈ D; 0 t x = x for any x ∈ D; and
x u y = x t y = 0 for any x, y ∈ D \ {0} with x 6= y. A function f : Dr → R is
k-submodular if f(X) + f(Y ) ≥ f(X u Y ) + f(X t Y ) for all X,Y ∈ Dr. The case
k = 2 is referred to as bisubmodular functions.

2.2. The basic LP relaxation. Since it is fundamental to our paper, let us
explicitly define the LP which lies behind all the above tractability results. Let F be
a finite set of cost functions over a domain D, and let I be an instance of VCSP(F) on
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variable set V = {v1, . . . , vn} and with valued constraints fi(vi,1, . . . , vi,ri), 1 ≤ i ≤ m.
The basic LP relaxation (BLP) of I is defined as follows. (The definition given in [50]
is slightly different, but can easily be verified to be equivalent to the formulation below
for our case.) Introduce variables µv=d for every v ∈ V and d ∈ D, and λfi,σ for every
valued constraint fi in I and every σ ∈ Dri . The (BLP) is defined as follows.

min

m∑
i=1

∑
σ∈Dri

fi(σ(1), . . . , σ(ri)) · λfi,σ

s.t.
∑
d∈D

µv=d = 1 ∀v ∈ V∑
σ∈Dri :σ(j)=d

λfi,σ = µv=d ∀1 ≤ i ≤ m, 1 ≤ j ≤ ri, d ∈ D, v = vi,j

0 ≤ λfi,σ, µv=d ≤ 1

Note that the size of the LP depends badly on function arity, e.g., we introduce
|D|r variables for a single r-ary valued constraint f . However for every finite set of
functions, as required above, this arity is bounded and the LP is of polynomial size.
We will later in the paper define smaller, equivalent LP-relaxations for particular
problem classes.

To reiterate, it is a consequence of [50] that if F is a set of k-submodular functions,
then the above LP solve VCSP(F) precisely.

2.3. Polymorphisms and fractional polymorphisms. A key tool in the
characterisation of CSP complexity is the algebraic method. For a domainD, an opera-
tion h : Dt → D, and a list of tuples A1, . . . , At ∈ D`, define h(A1, . . . , At) ∈ D` as the
result of applying h column-wise to the tuples, i.e., if A(j) denotes the j-th entry of a
tuple A, we let h(A1, . . . , At) be the tuple T ∈ D` such that T (i) = h(A1(i), . . . , At(i)).
Given a relation R ⊆ Dr, a polymorphism of R is an operation h : Dt → D such that
for any tuples A1, . . . , At ∈ R, we have h(A1, . . . , At) ∈ R (i.e., the relation R is
closed under the operation of applying h column-wise on any set of t tuples in R).
For a set of relations Γ, we say that Γ has a polymorphism h if h is a polymorphism
of every R ∈ Γ. It is known that the complexity of classical (feasibility) CSP(Γ) is
characterised by the set of polymorphisms of the allowed relation types Γ, however,
no complete dichotomy is known for this question.

We will need only the following notion: A majority polymorphism is a polymor-
phism h : D3 → D such that h(x, x, y) = h(x, y, x) = h(y, x, x) = x for any x, y ∈ D.
It is known that for any set of relations Γ with a majority polymorphism, the solution
set for any formula over Γ can be described using only binary relations (derivable
from Γ); see [31].

For valued constraints, the notions must be expanded to fractional polymor-
phisms; see [50, 51] for definitions, and for an exact characterisation of the VCSP
dichotomy results. For this paper, we will be content with a simpler notion. Let
f : Dr → R be a cost function. A binary multimorphism of f is a pair of oper-
ations 〈h1, h2〉 : D2 → D such that for any A,B ∈ Dr, we have f(A) + f(B) ≥
f(h1(A,B))+f(h2(A,B)). Similarly to above, 〈h1, h2〉 is a multimorphism of a set F
of cost functions if it is a multimorphism of every f ∈ F . The prime example would
be the submodular functions, which are defined on domain D = {0, 1} by the multi-
morphism 〈∩,∪〉 (i.e., f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )); it is well known that
submodular functions can be minimised efficiently (e.g., [27, 48]). Other examples
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of function classes F which imply that VCSP(F) is tractable include (among other
cases) functions submodular on an arbitrary lattice, defined as having the multimor-
phism 〈∨,∧〉, and functions (weakly or strongly) submodular on a tree; see [50] for
details.

3. Discrete Relaxations and FPT Branching. We now describe our ap-
proach more precisely.

Definition 3.1. Let f : Dr → R be a finite-valued cost function. A dis-
crete relaxation of f on domain D′ ⊃ D is a function f ′ : (D′)r → R, such that
(i) minx̄∈(D′)r f

′(x̄) = minx̄∈Dr f(x̄), and (ii) f(x̄) = f ′(x̄) for every x̄ ∈ Dr. A
discrete relaxation of a set of cost functions F = {f1, . . . , ft} is a set of cost func-
tions F ′ = {f ′1, . . . , f ′t} on a domain D′ ⊃ D, such that f ′i is a discrete relaxation of fi
for each i ∈ [t]. Finally, given an instance I of VCSP(F), the relaxed instance I ′

of VCSP(F ′) is created by replacing every cost function fi in I by its corresponding
relaxation f ′i . The (additive) relaxation gap of I is OPT(I)−OPT(I ′).

Note that we can have OPT(I) > OPT(I ′) despite every individual cost function
fi having an identical minimum (e.g., if setting v = d′ for every variable v minimises
every constraint, for some d′ ∈ D′ \D). If F is integer-valued, let the scaling factor of
the relaxation F ′ be the smallest rational c such that c ·f ′i is integral for every f ′i ∈ F ′.
In this case, we say that F ′ is a c-relaxation of F (note that this does not necessarily
imply that I ′ is an approximation).

Definition 3.2. Let F be a set of cost functions on a domain D, with a discrete
relaxation F ′ on domain D′. We refer to the values of D as the original values,
and D′ \ D as the relaxed values. In an assignment φ : V → D′, we say that
a variable v ∈ V is integral in φ if φ(v) ∈ D; otherwise, v is relaxed in φ. An
assignment φ is integral if it uses only original values, i.e., if every variable v ∈ V
is integral in φ. Borrowing a term from Kolmogorov [36], we say that the relaxation
is persistent if, for any optimal assignment φ∗ of a relaxed instance I ′, there is an
optimal assignment φ of the original instance I that agrees with φ∗ on the latter’s
integral values (i.e., if φ∗(x) is integral, then φ(x) = φ∗(x)).

As a slight technical point, note that persistence is a function of the division of the
domain D′ into integral and relaxed parts, and does not explicitly require a reference
to an original function on a domain D being relaxed. In our main case, we will deal
with functions on a domain of D = {1, . . . , k}, which have relaxations on a domain
D′ = {0, . . . , k} which are k-submodular. Thus, we will have a single relaxed domain
value of 0.

To illustrate the notions, we show the application to Vertex Cover. Consider
the Boolean domain D = {0, 1}. Let f∨ be defined by f∨(0, 0) = 1, and f∨(x, y) = 0
otherwise (i.e., f∨ is the soft version of the relation (x ∨ y)), and let f0(x) = x
(corresponding to the soft version of requiring x = 0). Then VCSP(f∨, f0) is NP-
hard, as it encodes Vertex Cover when f∨ is treated as a crisp constraint. On the
other hand, let D′ = {0, 1/2, 1}, and define the relaxations f ′∨(x, y) = max(0, 1−x−y)
and f ′0(x) = x. Then this is a discrete relaxation of the original problem, which
furthermore is a persistent 2-relaxation and can be solved in polynomial time, as it
corresponds to the classical LP-relaxation of Vertex Cover (see Nemhauser and
Trotter [41]). Furthermore, the relaxed functions are bisubmodular if D′ is renamed
as (0, 1/2, 1) 7→ (1, 0, 2).

This example also roughly illustrates the connections between tractable discrete
relaxations and half-integrality. From [50] we have that for every tractable set of
cost functions F , and every instance I of VCSP(F), the optimum of the basic LP
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relaxation (BLP) coincides with OPT(I). Since the results of [50] support weighted
functions (e.g., an input of wi · fi(·) rather than just fi(·)), and since such weights
only occur in the cost function of the LP, it must be that every vertex of the LP is
integral, i.e., that (BLP) is an integral LP. Now, rather than a half-integral LP, this is
an integral LP on a different, larger set of variables, however, in the cases considered
in this paper (bisubmodular and k-submodular functions), we will see that such a
larger LP can (at least in specific cases) be mapped down to a half-integral LP on the
original variable set.

Persistent relaxations are key to providing FPT algorithms, as the following
shows.

Lemma 3.3. Let F be a set of integer-valued cost functions on D, and let F ′ be a
persistent c-relaxation of F on domain D′, which includes all hard constants from D
(i.e., for each d ∈ D there is either a crisp constraint (v = d) or a valued constraint
fd(v) for which v = d is the unique minimum). Given black-box access to a solver
for VCSP(F ′), we can solve an instance I of VCSP(F) using O∗(|D|cp) calls to the
black-box solver and polynomial additional work, where p = OPT(I)−OPT(I ′) is the
additive relaxation gap.

Proof. Let I be the input instance, and I ′ the relaxed instance. Let x∗ = OPT(I ′),
and let p be a (guessed) bound on the relaxation gap. Pick an arbitrary variable v ∈ V ,
and attempt to enforce (v = d) for every d ∈ D in turn (e.g., by a sufficient1 number
of copies of the valued constraint fd(v)). If there is a value d ∈ D such that enforcing
(v = d) fails to increase the optimal cost of I ′, then add the enforcing of (v = d) to I ′,
and proceed with another variable (if possible); this is legal since the approximation
is persistent. If every variable v ∈ V is part of a forced assignment, then we have an
integral solution, which must be optimal since I ′ is a relaxation. In the remaining
case, every enforced assignment v = d raises the cost of I ′. In this case, we simply
recurse into |D| directions according to all possible assignments; in each branch, the
gap parameter p has decreased by at least 1/c. Halt a recursion if the gap parameter
reaches 0. We get a tree with branching factor |D| and depth at most cp, implying
the result.

For some problems, with some extra work, we can remove the factor |D| from
the base of the above running time; however, this is not possible in general unless
FPT=W[1] (see Section 4).

In the rest of this section, we focus on the case when the relaxation is a bisub-
modular function, and show how this case explains and extends certain results of
half-integrality from the literature; in the rest of the paper, we focus on cases of
k-submodular functions, and new results which follow from those.

3.1. Case study: Submodular and bisubmodular functions. As men-
tioned in Section 2, a bisubmodular function is defined as a function f : {0, 1, 2}r → R
which satisfies a certain multimorphism equation (f(A)+f(B) ≥ f(AtB)+f(AuB)
for all A,B ∈ {0, 1, 2}r). However, a more fitting interpretation may be to remap
the domain to D′ = {0, 1/2, 1}, whereupon the operations u,t can be defined as
{(x u y), (x t y)} = {d(x + y)e/2, b(x + y)c/2}, where t rounds away from 1⁄2 and u
towards 1⁄2. In this setting, we would interpret 1⁄2 as a relaxed value, and 0 and 1 as
integral. Kolmogorov [36] showed that with this domain split, bisubmodular functions
are persistent. Furthermore, bisubmodular functions can be efficiently minimised even

1(p+ 1) copies are enough since breaking these constraints leads to a solution of a value greater
than OPT(I′) + p.
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in a value oracle model [20].

Thus, by applying Lemma 3.3, we get that for any class of integer-valued cost
functions F on a domain {0, 1}n, with a bisubmodular discrete c-relaxation, the prob-
lem VCSP(F) is FPT with a running time of O∗(2cp), parameterized by the relaxation
gap p (where we will find that the factor c = 2 suffices for all our cases). We re-derive
some known FPT consequences.

Corollary 3.4 ([40]). Vertex Cover Above LP, Min Ones 2-CNF Above
LP, and Almost 2-SAT are all FPT with a running time of O∗(4p).

Proof. For Vertex Cover, we simply repeat the construction in the example.
Let D′ = {0, 1/2, 1} as above, and define f∨(x, y) = max(0, 1 − x − y) and f0(x) =
x. It can be verified that f∨ and f0 are both bisubmodular functions; by always
using f∨ at a weight of at least 2n, we may emulate a crisp (unbreakable) or-constraint.
Furthermore, we have assignments (x = 0) and (x = 1): in the former case via 2n
copies of f0(x); in the latter, via 2n copies of f∨(x, z0) where z0 is some new variable
forced to take value 0. Thus Lemma 3.3 applies.

To capture Min Ones 2-CNF and Almost 2-SAT, we observe that the fur-
ther functions f∧(x, y) = max(0, x + y − 1) and f→(x, y) = max(0, x − y) are also
bisubmodular, and furthermore valid relaxations of the corresponding soft versions of
2-clauses.

By the existence of a value oracle minimiser, we can extend to showing that the
problem Bisubmodular Cost 2-SAT, defined below, is FPT with a running time
of O∗(2p) (Since bisubmodular functions are closed under adding or subtracting a
constant, we may assume that f attains the value zero on {0, 1/2, 1}V , hence the total
cost parameter p has the same power as a relaxation gap parameter would.)

Bisubmodular Cost 2-SAT Parameter: p
Input: 2-CNF F on variable set V , non-negative bisubmodular function f :
{0, 1/2, 1}V → Z (with black box access), integer p.
Question: Is there a satisfying assignment φ : V → {0, 1} for F with f(φ) ≤ p,
where f(φ) = f(φ(v1), . . . , φ(vn)) is the value of f under φ?

Corollary 3.5. Bisubmodular Cost 2-SAT is FPT, with a running time
of O∗(2p). Submodular Cost 2-SAT under the same parameter is FPT with a
running time of O∗(4p), even for non-monotone submodular cost functions.

Proof. First, we may enforce the crisp 2-CNF formula F , as previously noted, by
creating large-weight finite-valued constraints for the 2-clauses.

For bisubmodular cost functions, the corollary follows in a straight-forward man-
ner. Let M be a value large enough to dominate the cost of f (such a value can be
found, if nothing else, by repeating the below with gradually higher values of M), and
construct a new bisubmodular cost function f ′ = f +

∑
C∈F M ·f(C), where f(C) for

a 2-clause C is the corresponding function defined in Corollary 3.4. Then any mini-
mizer of f ′ must satisfy the LP-relaxation of F . Since f is already integer-valued, our
“scaling factor” is 1, and the running time follows.

For submodular functions, we observe that the Lovász extension, evaluated on
{0, 1/2, 1}V , is a bisubmodular function, and thus a bisubmodular relaxation with
scaling factor 2. To be explicit, consider some A ∈ {0, 1/2, 1}V , decomposed as A =
A1 + 1

2A1/2 for A1, A1/2 ⊆ V , and write Ah = A1 ∪A1/2; proceed similarly for a second
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point B. By the definition of the Lovász extension and submodularity we have

2f̂(A) + 2f̂(B) = f(A1) + f(Ah) + f(B1) + f(Bh)

≥ f(A1 ∩B1) + f(A1 ∪B1) + f(Ah ∩Bh) + f(Ah ∪Bh)

≥ f(A1 ∩B1) + f(Ah ∪Bh) + f((A1 ∪B1) ∩ (Ah ∩Bh))

+ f((A1 ∪B1) ∪ (Ah ∩Bh)),

where it can be verified that the last four terms are exactly the same as would be
produced by applying the bisubmodular operators u,t on A,B directly and evaluating
the result.

The particular case of Submodular Vertex Cover was previously shown to
have a half-integral relaxation [28]; the above shows that this problem is also FPT.

Although it is difficult to get a good handle on the expressive power of bisub-
modular functions in general, let us mention that beyond submodular functions, the
class also covers twistings f(S∆X) of submodular functions f(X) (for some fixed
S ⊆ V ), sums of such twistings, and (perhaps more generally) rank functions of
delta-matroids [2].

In the appendix, we make a note observing that the use of a 2-CNF formula F
precisely captures the “crisp expressive power” of bisubmodular relaxations (in the
same way as a ring family for submodular functions; see Schrijver [49]).

3.2. Edge- versus vertex-deletion problems. Finally, we note that the above
discussion is generally described on an edge or constraint deletion level (e.g., a typ-
ical pre-relaxation cost function is a function f : {0, 1}r → {0, 1} encoding the soft
version of some relation R ⊆ {0, 1}r). In several problems (in particular in the fol-
lowing sections), one may wish to also express the vertex or variable deletion version.
This can be done as follows. For a variable v, occurring in d different constraints, we
introduce a separate variable v(1), . . . , v(d) for each occurrence, we give each individ-
ual constraint on these new variables high enough weight that it will be treated as
crisp, and we impose a valued constraint (v(1) = . . . = v(d)) (a soft wide equality),
which takes value 0 if all occurrences of v are identical and value 1 otherwise. These
constraints would effectively encode whether a variable v has been deleted (with con-
straint weight 1, e.g., every occurrence v(i) of v can take whatever value it needs to
satisfy its constraint) or not. Note that these soft wide equalities are defined on the
original domain, and hence need to admit an appropriate discrete relaxation; for the
case of k-submodular relaxations, this is possible.

A bigger problem is that these constraints have unbounded arity. For bisubmod-
ular functions, this is acceptable, both since we may use a value oracle model, and
since it has an implementation as a 2-CNF formula with additional variables, e.g.,
(v(1)→ y)∧ . . .∧ (v(d)→ y)∧ (y → z)∧ (z → v(1))∧ . . .∧ (z → v(d)). Unfortunately,
neither of these options is available for k-submodular functions; we will instead need
to construct a different LP.

4. On the power of k-submodular relaxations. We now investigate the
power of k-submodular functions for discrete relaxation, that is, we investigate the
class of cost functions f on a domain D = {1, . . . , k} which have discrete relaxations f ′

on the domain D′ = {0, . . . , k} such that f ′ is a k-submodular function. We will find
that this covers both some well-known half-integrality results (e.g., the Multiway
Cut problem [22]) and several new results that one might not have suspected (e.g.,
half-integral relaxations of Group Feedback Vertex Set and Unique Label
Cover).
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We begin with establishing the basic essential properties.
Lemma 4.1. The class of k-submodular functions, on domain D′ = {0, . . . , k},

is persistent with respect to a choice of integral domain D = {1, . . . , k}. Furthermore,
it contains all hard constants from D; specifically, for each d ∈ D there is a unary
valued constraint fd(v) which has v = d as a unique minimum.

Proof. For persistence, consider the following derivation. Let f be a cost func-
tion, X∗ a relaxed optimum, and X an integral optimum.

f(X) + 2f(X∗) ≥ f(X uX∗) + f(X tX∗) + f(X∗)

≥ f(X uX∗) + f((X tX∗) uX∗) + f((X tX∗) tX∗)
≥ 2f(X∗) + f((X tX∗) tX∗),

where the first two lines are due to application of k-submodularity equality, and the
last line is since f(X∗) is a relaxed optimum. Thus f(X) ≥ f((X tX∗)tX∗) for any
integral optimum X and relaxed optimum X∗. Observe now that the latter operation
preserves all coordinates from X where X∗ takes value zero, and replaces all other
coordinates (where X∗ is integral) by the value from X∗. Thus the right-hand-side of
this equation is an integral optimum which agrees with X∗ on the integral coordinates
of the latter.

For the last part, we define fd(v) such that fd(d) = 0; fd(0) = 1/2; and fd(d
′) = 1

for any d′ ∈ D, d′ 6= d.
Corollary 4.2. For any set F of bounded-arity functions on a domain {1, . . . , k},

with a known k-submodular c-relaxation F ′, the problem VCSP(F) is FPT with a run-
ning time of O∗(kcp), where p is the relaxation gap.

The restriction of arity is due to the size of the Basic LP relaxation. Unfortunately,
as mentioned in Section 3.2, this is a significant restriction if one wants to support
vertex deletion problems.

In the rest of this section, we first establish a basic collection of functions with k-
submodular relaxations (and make a note on the structure of k-submodular optima),
then provide an alternate LP-relaxation for this particular set of functions, to get
around the problem of arity. Finally, we make a note on the parameterized complex-
ity of the Unique Label Cover problem. We then study the Group Feedback
Vertex Set problem in Section 5.

4.1. Basic k-submodular functions. Now, let us establish some basic k-
submodular relaxations.

Lemma 4.3. The following cost functions on a domain D = {1, . . . , k} have k-
submodular relaxations. We let x, y denote variables and d, d′ domain values.

1. Any unary function;
2. the soft version of a constraint (x = π(y)), for any permutation π on D;
3. the soft version of a constraint (x = d ∨ y = d′) for d, d′ ∈ D;
4. the soft version of the constraint (x1 = . . . = xr).

The scaling factor in all cases is 2.
Proof. We supply only the relaxations here; the proof that each relaxation is

actually k-submodular is straight-forward case analysis, deferred to the appendix.
1. For the first case, we may simply relax by stating f ′(0) = mind∈D f

′(d).
We may also use a slightly stronger version, as follows. Put d1 = arg mind∈D f(d),
and d2 = arg mind∈D:d6=d1 f(d). Then we may use

f ′(0) =
f(d1) + f(d2)

2
.
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In particular, this covers “hard constants” on D.

2. For the second case, define a relaxation f such that f(0, 0) = 0 and f(a, 0) =
f(0, a) = 1/2 if a 6= 0.

3. For the third case, with specified domain elements d, d′ ∈ D, let fd,d′ on D′

be the extension of the original valued constraint to D′ as follows: fd,d′(d, 0) =
fd,d′(0, d

′) = fd,d′(0, 0) = 0, and fd,d′(0, d
′′) = fd,d′(d

′′, 0) = 1/2 for all remaining
cases.

4. For the soft wide equality function, define a relaxation as follows. If a tuple
contains distinct integral values, the cost is 1; if a tuple contains some integral value
and the value 0, the cost is 1⁄2; if the tuple is constant, the cost is 0.

This completes the cases.

Via Corollary 4.2, this implies that VCSP(F) is FPT when F contains bounded-
arity versions of the above cost functions. The constraint (x = d∨ y = d′) is included
mostly for completeness (see below, regarding the solution structure), although it does
allow for a generalisation of how Almost 2-SAT could be encoded into a bisubmodu-
lar cost function. The case of bijection constraints is more interesting, as it allows for
a direct encoding of Unique Label Cover (see Section 4.3) and problems related
to Group Feedback Edge/Vertex Set problems (see Section 5). Finally, the soft
wide equality constraints imply that we could in principle handle vertex-deletion, if
we had a better underlying solver than the Basic LP; this is tackled in Section 4.2.

As for bisubmodular functions, we show that the cases of Lemma 4.3 are sufficient
to capture the crisp expressive power of functions with k-submodular relaxations; the
proof is in the appendix. Interestingly, this coincides with the language of so-called
0/1/all constraints of Cooper et al. [14], who showed this to be the unique maximal
tractable CSP language closed under all permutations of the domain (see [14]).

Lemma 4.4. Let f be a k-submodular function on Dn, and let P ⊆ Dn be the
set of points X that minimise f(X). Let Pint = P ∩ {1, . . . , k}n. Then Pint can be
described as the set of solutions to a formula over arbitrary unary constraints and
constraints (x = a ∨ y = b) and (x = π(y)) (defined as in Lemma 4.3).

Note that this does capture the whole structure of minima of k-submodular func-
tions, due to the special way in which we treat the element 0. Furthermore, and
more strongly, this does not limit the expressive power of k-submodular functions in
general, as it focuses purely on the structure of minima. (See discussion in appendix.)

For our purposes, it also implies that if R is a relation on domain D whose soft
version has a k-submodular relaxation, then R can be expressed as a conjunction over
the constraints above. However, we do not know whether the soft version of R can in
this case necessarily be implemented as such a formula (taking costs 0 and 1 only).

4.2. A half-integral LP formulation. We now proceed to give an alternate
half-integral LP-formulation for the k-submodular relaxations given in Lemma 4.3.
The construction is somewhat modelled after the half-integral LP for Node Mul-
tiway Cut given by Garg et al. [22]. Let the input be an instance I of VCSP(F)
with m constraints, where F is the set of cost functions given in Lemma 4.3. Let
the variable set of the VCSP be V = {v1, . . . , vn}. We split every variable vi ∈ V in
the CSP into k variables vi,d, one for every d ∈ [k] := {1, . . . , k}. Further, for every
constraint fj of I, we introduce a variable zj to take care of the cost of fj . Define
a set A to contain all pairs (i, d) such that an assignment (vi = d) is to be enforced.
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The framework constraints of the LP are as follows.

min
∑
j

zj

s.t. vi,a + vi,b ≤ 1 ∀i ∈ [n], a, b ∈ [k], a 6= b

vi,d = 1 ∀(i, d) ∈ A
vi,d, zj ≥ 0 ∀i ∈ [n], d ∈ [k], j ∈ [m]

Further constraints bound the value of zj ; throughout, we use the relaxation functions
of Lemma 4.3. If fj(vi) is a unary cost function, let fj(0) := (fj(d1)+fj(d2))/2, where
d1 = arg minx∈[k] fj(x) and d2 = arg minx∈[k],x 6=d1 fj(x). We constrain zj as follows.

(4.1) zj ≥ fj(0) + (2vi,d − 1)(fj(d)− fj(0)) ∀d ∈ [k].

If fj is the soft version of (vp = π(vq)), for some permutation π on [k], constrain zj
as follows.

(4.2) zj ≥ |vp,π(d) − vq,d| ∀d ∈ [k].

Here, z ≥ |x− y| is shorthand for the two separate equations z ≥ x− y and z ≥ y−x.
If fj is the soft version of (vp = a∨ vq = b) for some a, b ∈ [k], constrain zj as follows.

(4.3) zj ≥ 1− vp,a − vq,b.

Recall that zj ≥ 0 is additionally always in effect. Finally, if fj is the soft wide
equality (vi1 = . . . = vir ), for some i1, . . . , ir ∈ [n], constrain zj as follows.

(4.4) zj ≥ |vip,d − viq,d| ∀d ∈ [k], p, q ∈ [r].

Again, the absolute value is shorthand for a split into two equations. This completes
the description of the new LP. We will now show its half-integrality. The proof goes
through a series of exchange arguments, but ultimately the result comes down to
showing that the new LP has an optimum which corresponds exactly to an integral
optimum of the basic LP, using the relaxation functions of Lemma 4.3.

We need some terminology. Let vi ∈ V be a variable of the CSP, and let v∗i :=
(vi,1, . . . , vi,k) denote the vector of corresponding variables in the above LP. We say
that vi,d is tight in an assignment if there exists some d′ ∈ [k], d 6= d′ such that
vi,d + vi,d′ = 1, and that vi has a standard assignment if vi,d is tight for every d ∈ [k].
Thus in a standard assignment, v∗i is characterised by the mode arg maxd∈[k] vi,d and
its frequency maxd∈[k] vi,d. An assignment vi = d in the CSP, for d 6= 0, corresponds to
a standard assignment with mode d and frequency 1, while an assignment vi = 0 in the
CSP corresponds to a standard assignment with frequency 1/2. Let the half-integral
standard assignments be those whose frequency is either 1/2 or 1.

We give the proof in two parts, first showing that there is an LP-optimum where
every variable vector v∗i takes a standard assignment, then showing that in fact,
this assignment can be taken to be half-integral. By further observing that in a
half-integral assignment, each cost variable zj takes the value of the corresponding
k-submodular 2-relaxation of Lemma 4.3, we complete the proof.

Lemma 4.5. Let φ∗ be an optimum to the above LP, and let X be the set of
variables vi,d which are not tight in φ∗, and such that vi,d < 1/2. Let φ′(ε) equal
φ∗+ εX, with variables zj readjusted accordingly. Then for a sufficiently small ε > 0,
φ′(ε) is another optimal assignment to the LP.
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Proof. By readjusting the variables zj , we mean that every variable zj is given the
smallest possible feasible value, given the assignments to the variables vi,d fixed by
φ′(ε). Since variables in X are not tight, φ′(ε) is a feasible assignment for a sufficiently
small ε > 0. We will further verify that the readjustment of the variables zj does not
increase the total cost. This is done on a constraint-by-constraint basis.

Claim 1. Let fj be a unary cost function on a variable vi in the CSP, and
zj constrained as in (4.1). For a sufficiently small ε > 0, the value of zj does not
increase.

Proof. Let d1 and d2 be the first and second minimising values of fj , as above.
We assume for simplicity that fj(0) = 0 (even at the risk of having fj(d1) < 0), by
adjusting every value of fj(·) by −fj(0). Observe that the value of zj changes by this
by the constant −fj(0). We also readjust zj ≥ 0 to zj ≥ −fj(0); thus this is a simple
shift of the value of zj . We can simplify (4.1) as follows:

zj ≥ (2vi,d − 1)fj(d) ∀d ∈ [k].

First assume that fj(d1) = fj(d2) = fj(0) = 0; thus fj(d) ≥ 0 for every d. In
particular, for d = d1 the equation reads zj ≥ 0. To raise the value of zj , some
variable vi,d must have a value greater than 1/2, but such a variable would not be
changed.

Now, assume that we have f(d1) < 0, thus f(d1) + f(d2) = 0. If vi,d1 < 1/2 then
zj > 0, but raising the value of vi,d1 does not increase zj ; in this case, the only other
possible tight value for zj would be some d such that vi,d > 1/2, but again, such a
variable would not be readjusted.

Otherwise vi,d1 ≥ 1/2, but then vi,d ≤ 1 − vi,d1 ≤ 1/2 for every d 6= d1. Inserting
d = d2 into the equation we have a right-hand-side of (2vi,d2 − 1)fj(d2) ≤ (1 −
2vi,d1)fj(d2) = (2vi,d1 − 1)fj(d1), matching the equation for d = d1; for every other
value of d, the equation has at least as high slope. Thus no non-tight value other than
d1 can define the value of zj .

Claim 2. Let fj be the soft version of the constraint (vp = π(vq)), and zj
constrained as in (4.2). For a sufficiently small ε > 0, the value of zj does not
increase.

Proof. Assume that vq,b is raised, immediately increasing the value of zj . Let
a = π(b). Then vp,a cannot be raised by X, hence either vp,a ≥ 1/2 or vp,a is a
tight value. But since vq,b < 1/2, in the former case the value of zj will not increase;
hence vp,a ≤ vq,b and vp,a + vp,a′ = 1 for some a′ ∈ [k]. Let b′ = π−1(a′). Then
vp,a′ − vq,b′ > (1 − vp,a) − (1 − vq,b) = vq,b − vp,a, contradicting the claim that the
equation vq,b − vp,a maximises zj .

Claim 3. Let fj be the soft version of the constraint (vp = a ∨ vq = b), and
zj constrained as in (4.3). For a sufficiently small ε > 0, the value of zj does not
increase.

Proof. The right-hand-side of (4.3) has no positive coefficients for any vi,d.
Claim 4. Let fj be the soft equality (vi1 = . . . = vir ), for some i1, . . . , ir ∈ [n],

and let zj be constrained as in (4.4). For a sufficiently small ε > 0, the value of zj
does not increase.

Proof. Note that the value of zj equals the largest cost of a soft binary equality
(vp = vq) for p, q ∈ {i1, . . . , ir}. By Claim 2, for a sufficiently small ε > 0, no such
binary equality increases in cost, hence neither does zj .

Thus, for every constraint fj there is some value ε > 0 such that φ′(ε) does not
incur a larger cost for fj than φ∗. Since this is a finite number of bounds, taking the
minimum still yields some ε > 0 and the proof finishes.
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This implies that there is some LP-optimum φ∗ such that computing X from
φ∗ yields an empty set. (This follows by, e.g., considering that optimum φ∗ which
maximises

∑
i,d vi,d.) In such an LP-optimum φ∗, every variable vi,d with vi,d < 1/2

is tight, and hence every variable vi,d is tight (by consider a corresponding variable
vi,d′ ≤ 1/2), i.e., φ∗ is a standard assignment. We proceed to show that there is a
half-integral optimum.

Lemma 4.6. Let φ∗ be an optimum which is a standard assignment. Let X+ =
{vi,d : 1 > φ∗(vi,d) > 1/2} and X− = {vi,d : 0 < φ∗(vi,d) < 1/2}. For some sufficiently
small ε > 0, we have that φ∗ + ε(X+ −X−) and φ∗ − ε(X+ −X−) are both optimal
assignments.

Proof. It is clear that both suggested assignments are feasible and standard for
sufficiently small ε > 0. Let φ′(ξ) = φ∗ + ξ(X+ − X−); we will verify that there is
some ε > 0 such that for every constraint fi, the cost of fi is a linear function in ξ
for |ξ| ≤ ε. Since φ∗ is an optimal assignment, this must imply that all these linear
cost functions cancel and the cost is invariant under ξ. We again proceed by type of
constraint.

Claim 5. Let fj be a unary cost function on a variable vi in the CSP. For a
sufficiently small ε > 0, the value of zj is locally linear in ξ.

Proof. Let vi be the involved variable, and let d be the mode of vi. We assume
that vi is not already half-integral (since then, vi would be kept constant). Let d1, d2

be the two minimising values, as before. If f(d) > f(d2), then the equation for value
d is the sole maximising equation for zj , which is thus locally linear. If d = d1, then
the maximising equations are for values d1 and any d′ such that fj(d

′) = fj(d2). If
the former instantiation of equation (4.1) has slope α, then all latter instantiations
have slope −α, thus modification by ξ is locally linear. Otherwise, d and d1 are the
unique maximising equations, and again the slopes are each others’ opposites, making
ξ locally linear. This finishes the claim.

Claim 6. Let fj be the soft version of the constraint (vp = π(vq)). For a
sufficiently small ε > 0, the value of zj is locally linear in ξ.

Proof. Let a be the mode of vp and b be the mode of vq. Observe that the cost of
zj equals |vp,a−vq,b| if a = π(b), otherwise vq,b−vp,π(b) = (1−vq,π−1(a))−(1−vp,a) =
vp,a − vq,π−1(a) = zj , and the latter holds for any standard assignments to vp and
vq. If one variable, say vq, is already half-integral, then this yields a linear function
(in particular as the absolute value in the first case is non-zero, given that vq is
half-integral but vp not). If both variables are fractional, the first case applies, and
vp,a = vq,b, then observe that vp,a and vq,b are modified identically by ξ. Finally, in
any other case zj is determined by a locally linear function of the involved variables
vp,d, vq,d.

Claim 7. Let fj be the soft version of the constraint (vp = a ∨ vq = b). For a
sufficiently small ε > 0, the value of zj is locally linear in ξ.

Proof. Let z = 1 − vp,a − vq,b. If z > 0, then zj = z and zj is determined solely
by this equation. If z < 0, then zj = 0 up to some local adjustment ξ. Finally, if
z = 0, either vp and vq are both half-integral, and zj is constant in ξ, or vp and vq
are adjusted by ξ in opposite directions, again leaving zj constant.

Claim 8. Let fj be the soft equality (vi1 = . . . = vir ), for some i1, . . . , ir ∈ [n].
For a sufficiently small ε > 0, the value of zj is locally linear in ξ.

Proof. W.l.o.g., let us use it = t for each t ∈ [r]. Observe that for every variable
vp, p ∈ [r], with mode d, the cost of the pair (vp, vq) equals |vp,d−vq,d| for every other
variable vq, q ∈ [r].
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Let v1 be a variable among the set which maximises the frequency (i.e., if any
variable is integral, then v1 is integral). Let a be the mode of v1. Let vr be a variable
which minimises vp,a, thus (v1, vr) maximises the cost of zj .

If vr,a ≥ 1/2, then observe that no variable vp for p ∈ [r] has a mode other than
a, hence the tight pairs are exactly pairs (vp, vq) where vp,a = v1,a and vq,a = vr,a. If
v1 is integral and vr half-integral, then this cost is unaffected by ξ; if v1 is integral
but vr is not half-integral or vice versa, then the cost is a linear function of ξ; and
if neither case occurs, then for every pair of LP variables (vp,a, vq,a), the pair are
adjusted equally by ξ and zj is constant. This finishes the case vr,a ≥ 1/2.

Thus assume that vr,a < 1/2, and let b be the mode of vr. If vr,b = v1,a, then edges
which maximise zj go only between variables of this frequency; either this frequency is
1, in which case we have contradictory integral assignments and zj = 1 independent
of ξ, or ξ modifies all these maximal frequencies identically, thus the situation is
preserved by the modification and the cost is modified linearly in ξ.

Otherwise, let U be all variables vi such that vi,a = v1,a, and let W be all variables
vi such that vi,a = vr,a. The pairs (vp, vq) which maximise zj are exactly those where
vp ∈ U and vq ∈W , furthermore, the cost of such an edge is exactly vp,a−vq,a (by the
initial observation). Furthermore, this situation is preserved by some local variation
of ξ; our conditions are v1,a > 1/2 > vr,a and v1,a > vr,b, both of which are stable for
some range of ξ. Finally we observe that all costs vp,a − vq,a in fact equal v1,a − vr,a
also after modification by ξ, hence zj is locally linear.

Since every constraint fj is found to have locally linear cost while |ξ| ≤ ε for some
ε > 0, and since there is a finite number of constraints, there is some ε > 0 such that
|ξ| ≤ ε implies that every constraint fj varies linearly with ξ. By optimality of φ∗,
the total cost must thus be locally constant.

We can now finish our result.

Theorem 4.7. The above LP has a half-integral optimum, which can be found
in polynomial time, and which corresponds directly to an optimal assignment for the
original CSP.

Proof. Let x∗ be the optimal value of the above LP, and let φ∗ be an as-
signment which achieves this cost, and subject to this lexicographically2 maximises
(v1,1, v1,2, . . . , vn,k) (such an assignment can be found by first maximising v1,1, then
maximising v1,2 after fixing the value of v1,1, and iterating the process). Then φ∗ must
be a standard assignment by Lemma 4.5. Furthermore, we must have X+ = X− = ∅
as computed in Lemma 4.6: otherwise, by Lemma 4.6 some “local adjustment” ξ is
possible and we can obtain an assignment that is lexicographically larger than φ∗.
Thus φ∗ is a standard assignment with X+ = X− = ∅, i.e., half-integral.

For the last part, simply verify for each of the four constraint types that the cost
zj when evaluated at a half-integral point equals exactly that of the k-submodular
relaxations given in Lemma 4.3.

4.3. The parameterized complexity of Unique Label Cover. We now
focus specifically on consequences for the problem Unique Label Cover. This is the
defining problem of the Unique Games Conjecture [35], which is of central importance
to the theory of approximation. In our terms, Unique Label Cover corresponds to
the problem VCSP(F) where F contains the soft versions of all constraints (x = π(y))
for bijections π on a domain D = [k] for some k. In the below, we will consider both

2A vector (x1, . . . , xn) is called lexicographically larger than a vector (y1, . . . , yn) if there exists
i ∈ [n] such that xi > yi and xj = yj for any j < i.
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edge- and vertex-deletion versions of the problem; we will let Σ denote the label set of
an instance (corresponding to the domain D), and p the minimum instance cost (i.e.,
the minimum number of edges resp. vertices one needs to delete to get a satisfiable
remaining instance). Observe that there is a simple reduction from the edge-deletion
version to the vertex-deletion version. The problem was previously considered from
an FPT perspective by Chitnis et al. [10], who provided an FPT algorithm in the

two parameters |Σ|, p, with a running time of O∗(|Σ|O(p2 log p)), using highly advanced
algorithmic methods. We observe that we can improve the running time.

Corollary 4.8. Unique Label Cover is FPT, both in edge- and vertex-
deletion variants, with a running time of O∗(|Σ|2p), where Σ is the label set of the
instance and p is its cost (i.e., the minimum number of non-satisfied edges resp.
vertices).

Proof. For the edge deletion case, the result follows directly from the basic LP
relaxation (e.g., invoking Corollary 4.2 using constraint set F as above and relaxations
given by Lemma 4.3).

For vertex deletion, we follow the outline sketched in Section 3.2. For every edge-
constraint in the input, we create 2p + 1 copies of the corresponding soft constraint,
to make it too costly to break. For every vertex v ∈ V , we split v into t := d(v) copies
v(1), . . . , v(t), and place one such copy in every edge uv involving the vertex v (and
hence in all 2p+ 1 valued constraints stemming from the edge). Finally, we introduce
a soft equality constraint (v(1) = . . . = v(t)), which can be broken at cost 1 with a
net effect equivalent to that of deleting v.

To solve this problem, we can then invoke the generic result of Lemma 3.3, using
the k-submodular relaxations of Lemma 4.3 and the LP-formulation given in Sec-
tion 4.2 (due to Theorem 4.7).

Chitnis et al. [10] showed that the problem is W[1]-hard, even in the edge-deletion
version, when parameterized by p alone (when |Σ| occurs in the input) by a reduction
from k-Clique. This implies a conditional lower bound on the running time via the
ETH-hardness of k-Clique (see [8, 9]); however, despite the above improvement, the
upper and lower bounds still do not meet. We leave it as an open question whether
a running time like O∗(cp|Σ|o(p)) would contradict ETH.

Finally, we observe that the improved branching used in Section 5 for Group
Feedback Vertex Set partially applies here, implying a running time bound of
O(4p|Σ|c), where c is the number of connected components after OPT has been re-
moved. (In particular, for the edge-deletion version we may slightly refine this to
22p−c|Σ|c), and observe c ≤ p+ 1, assuming that G is connected.)

5. Group Feedback Vertex Set. We now consider the application of the above
techniques to the problem of Group Feedback Vertex Set. We first review a few
notions (essentially following Guillemot [23] and Cygan et al. [16]). Let Γ be a finite
group with identity element 1Γ. A Γ-labelled graph is a graph G = (V,E) with a
labelling λ : E → Γ such that λ(u, v)λ(v, u) = 1Γ for every edge uv ∈ E. A consistent
labelling for a Γ-labelled graph G is a labelling φ : V → Γ such that for every uv ∈ E,
φ(u)λ(u, v) = φ(v). We now define the problem.

Group Feedback Vertex Set Parameter: p
Input: A group Γ, a Γ-labelled graph G = (V,E) with labelling λ, and an integer p.
Question: Is there a set X ⊆ V with |X| ≤ p such that G \ X has a consistent
labelling?

For a path P = v1 . . . vr, we let λ(P ) = λ(v1, v2) · . . . · λ(vr−1, vr); similarly, for
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a cycle C = v1v2 . . . vrv1, we let λ(C) = λ(v1, v2) · . . . · λ(vr, v1). We say that C is
non-null if λ(C) 6= 1Γ. An important aspect of the problem is the following “dual”
view on consistency.

Lemma 5.1 ([23]). A Γ-labelled graph G has a consistent labelling if and only if
it contains no non-null cycles.

Since the consistency condition simply needs to verify the bijections on the edges,
the Group Feedback Vertex Set problem is a special case of Unique Label
Cover, and is thus covered by the result of Section 4.3. However, it turns out we can
do much better. The following will be the main conclusion of the current section.

Theorem 5.2. The Group Feedback Vertex Set problem can be solved in
time O∗(4p), even when the group Γ is given via oracle access only.

Previous work by Guillemot [23] and by Cygan et al. [16] established that the
problem is FPT, however, the best achieved running time was O∗(2O(p log p)) [16].
We follow Cygan et al. [16] in the definitions of the oracle access model: we assume
that we have access to an oracle which can multiply two elements, invert an element,
produce the identity element 1Γ, and verify whether two elements are equal.

5.1. An improved branching algorithm. We begin by describing the im-
proved branching process that lies behind Theorem 5.2. We assume that Γ is given
via oracle access, e.g., we are dealing with VCSP(F) for a humongous domain Γ. Let
GFVS with Assignments for group Γ denote Group Feedback Vertex Set
enhanced with a requirement that certain variables take certain values in the opti-
mum. Furthermore, let Half-integral GFVS with Assignments refer to the
k-submodular 2-relaxation of this problem, as given by Lemma 4.3. In the follow-
ing, we assume that each invocation of Half-integral GFVS with Assignments
returns an optimal solution (rather than just a cost).

Lemma 5.3. Group Feedback Vertex Set can be solved via O∗(4p) invoca-
tions of Half-integral GFVS with Assignments.

Proof. The improvement is centred around the following observation.
Claim 9. Let (G,Γ, λ, p) be an instance of Group Feedback Vertex Set

(without assignments). Let v ∈ V be an arbitrary vertex. Then either v is deleted by
every optimal solution, or there is an optimal solution with a consistent labelling φ
where φ(v) = 1Γ.

Proof. Let X ⊆ V be an optimal solution with v /∈ X, and let φ be the corre-
sponding consistent labelling. Then for any γ ∈ Γ, φ′(u) = φ(u) · γ defines another
consistent labelling of the graph. In particular, we can choose γ = φ(v)−1.

We will give a sketch of the improved branching process. First, we initialise
our algorithm by picking an arbitrary v ∈ V , and branch on deleting v or not; by
Claim 9, in the latter case we may assume that v = 1Γ. Deleting v will decrease
p by 1, and assigning v = 1Γ will decrease p by at least 1⁄2, unless the input is
already consistent. We will “grow” a region of integrally assigned vertices around v,
by repeatedly selecting a relaxed vertex u neighbouring this region and branching on
u being deleted or not. (We will find that this requires only two branches.) If at
any point no such vertex u exists, then the region of integral vertices in fact forms
an integral connected component in the graph, and we may restart the process by
selecting a new starting vertex v.

Concretely, we do the following. As before, we split every vertex into different
variables v(i) for all its edge occurrences, then replicate each edge constraint 2p + 1
times to prevent edges from being broken. We maintain a set A of enforced assign-
ments (v(i) = d) and a set X of explicit deletions, both initially empty. We let p0 ← p
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be our initial budget bound. Our branching algorithm then proceeds as follows: Let
φ∗ be an optimal solution for the Half-integral GFVS with Assignments in-
stance corresponding to G, X and A (where X is implemented by simply omitting the
corresponding soft equality constraints from the instance construction), and let x∗ be
the cost of φ∗. Compute p = p0 − |X| − x∗; if p < 0, reject. Add to A any integral
assignments of φ∗ not already contained in it, and add to X any variables v such that
A contains (v(i) = d) and (v(j) = d′) for some integral values d 6= d′. If there is a
half-deleted vertex v (i.e., a vertex such that the cost of its soft equality constraint
is 1/2), let d be the non-zero value assigned to some occurrence of v. Compute two
new instances, one where assignments (v(i) = d) are added to A for all occurrences
of v, and one where v is added to X. If either of these instances does not lead to
a decreased budget, then we claim that the corresponding solution must contain at
least one new integral assignment u(i) = d, u ∈ V . In the former case, this is clear;
in the latter case, observe that replacing v from X into the instance as a soft equality
constraint yields a valid relaxed solution, thus it must be that v uses two distinct
integral assignments in the new relaxed optimum (note that v(i) = d for some i due
to assignments in A). Finally, if both new instances lead to a decrease in p, branch
accordingly in both directions.

The remaining case is that every vertex v is either fully deleted or not deleted
at all in the current optimal relaxed assignment. But then, all assigned vertices form
connected components, whose every neighbour in the original graph G is contained
in X. In other words, the remaining graph G \ X contains a connected component
of entirely relaxed vertices; we may then pick an arbitrary occurrence v(i) of an
unassigned vertex v, and add (v(i) = 1) to A (leading ultimately to a solution where
v is either fully assigned or fully deleted).

Throughout, the correctness of our operations rely upon the persistence of the
relaxation Half-integral GFVS with Assignments. The branching tree has a
branching factor of 2, and a depth of at most 2p, and in every node we make a
polynomial number of calls to Half-integral GFVS with Assignments.

By the above, we get an O∗(4p)-time algorithm for Group Feedback Vertex
Set when the group Γ is given explicitly, e.g., via invocation of Theorem 4.7 of
Section 4.2 to solve the Half-integral GFVS with Assignments subproblems.
The case of oracle-access only to Γ is handled next.

5.2. Oracle-access groups. Unlike in the last section, when Γ is given only via
oracle access it could be that Γ contains an exponential number of elements (indeed,
the simplest reduction from Feedback Vertex Set uses the group Γ = Zm2 ). To
handle this, we redesign the LP to not keep track of vertices’ explicit assignment, but
only whether each vertex has been deleted or not. We introduce one variable zi for
each vertex vi ∈ V , and an exponential number of constraints (solved via a separation
oracle) as follows. By a simple reduction, assume that a unique assignment (t = 1Γ)
is required. A double path ending in v ∈ V is a pair (Pa, Pb) of paths from t to v, such
that λ(Pa) 6= λ(Pb). Let z(P ) denote the sum of zi for internal vertices of a path P .
Then the length of (Pa, Pb) is defined as z(Pa, Pb) := z(Pa) + z(Pb) + z(v) (note that
internal vertices common to both paths are counted twice). The length of a cycle C
is defined as z(C) =

∑
vi∈C zi. For simplicity, for a vertex v = vi, we write z(v) for zi

(to avoid having to explicitly state all vertex indices). Our constraints will state that
the length of every double path is at least 1. Call the resulting constraints a double
path system. A set of weights zi under which every double path has length at least 1 is
said to be double-path-hitting. We will show that double path systems can be used to
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solve the Half-Integral GFVS with Assignments problem (half-integral GFVS,
for short), even for groups with oracle access, which then combined with Lemma 5.3
yields an FPT algorithm for GFVS.

We now proceed with the proofs. We first show that vertex-deletion informa-
tion is sufficient, then we show that the double path system actually provides this
information.

Lemma 5.4. Assume a solver for Half-integral GFVS with Assignments
which reveals the costs of the soft equality constraints of the instance, but no more
information. From this we can construct an optimal assignment.

Proof. Clearly, we must satisfy all assignments from A. Furthermore, we may
let these assignments propagate through edge labels until we reach a vertex in the
support of the half-integral solution (i.e., partially or fully deleted). In this case,
we fix the assignment to the corresponding occurrence v(i) of this vertex v, but do
not propagate further through v. If this leads to a contradictory assignment (other
than for fully deleted vertices), then the deletion values did not encode a feasible
assignment. Otherwise, after this process terminates, we may safely assign every
other variable the value 0.

5.2.1. Equivalence of the formulations. To show that double path systems
solve half-integral GFVS, we show that they are (in an appropriate sense) equivalent to
the improved LP formulations of Section 4.2; the existence of a half-integral optimum
then follows from Theorem 4.7. Refer to the LP of Section 4.2 as the reference LP.

We first show that every half-integral optimum of the reference LP satisfies all
constraints of the double path system.

Lemma 5.5. Let φ∗ be a half-integral optimum to the reference LP corresponding
to an instance of Half-integral GFVS with Assignments, and let zi be the
weight in φ∗ of the soft equality constraint for vi, for each i ∈ [n]. Then these values
zi are double-path-hitting. Furthermore, every other soft constraint in the original LP
has cost zero under φ∗.

Proof. We begin by the last point: By the construction of the VCSP, any optimal
solution will satisfy each assignment and each edge constraint (v(i) = π(u(j)) at
cost zero; thus the only constraints not completely satisfied are the soft equality
constraints.

Now let V1 = {vi ∈ V : zi = 1} and V1/2 = {vi ∈ V : zi = 1/2}. Let H be the
connected component of G induced by the vertices reachable from t in G \ (V1 ∪V1/2).
Then H has a consistent labelling (as all constraints within H are satisfied). Thus,
every double path must intersect V1 or V1/2. If a double path intersects V1, or intersects
V1/2 in two places or in a vertex with multiplicity two in the double path, then certainly
the double path has length at least 1. Thus let (Pa, Pb) be a double path, ending at
v, which intersects exactly one vertex u ∈ V1/2 (we may have u = v).

If u = v, let v(i) and v(j) be the occurrences of v at which the paths Pa and Pb
end. Since these paths (excluding the endpoint) are contained in H, the penultimate
vertex of each path must be integral. But then v(i) and v(j) are both integral, and
by the inconsistency of the two paths these must be different. This contradicts the
claim that v ∈ V1/2.

Otherwise, assume w.l.o.g. that z(Pa) = z(v) = 0, and z(Pb) = 1/2. Let u(i)
and u(j) be the first and second occurrence of u in Pb (e.g., the occurrences of u on
the edge which enters resp. leaves u). Since all vertices of the double path except
u are contained in H, we have integral assignments to all variables, including u(i)
and u(j), and for every vertex v′ 6= u they are at cost zero. Thus, since the double
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path is inconsistent, u(i) and u(j) must have distinct integral assignments, again
contradicting that u ∈ V1/2.

We now show the reverse direction.

Lemma 5.6. Let zi be an optimal assignment to the double path system corre-
sponding to an instance of Half-integral GFVS with Assignments. Then there
is a feasible assignment φ to the reference LP for the same instance, where the cost
of the soft equality for vertex vi is zi, and where all other soft constraints have cost
zero.

Proof. We will construct a feasible assignment φ to the reference LP, where every
vertex (or rather, every occurrence v(i) of every vertex) takes a standard assignment.
To define this assignment, let v(i) be an occurrence of a vertex v on an edge uv;
temporarily treat v(i) as a vertex subdividing the edge uv, with z(v(i)) = 0, with an
identity-labelled edge connecting it to v. Let P be a shortest path from t to v(i) (as
measured by z(P )), and let γ ∈ Γ be its resulting label. If z(P ) ≥ 1/2, let v(i) = 0;
otherwise, let v(i) take the fractional assignment with mode γ and frequency 1−z(P ).
Repeat this for every occurrence v(i) of every vertex v of the graph. We claim that
this creates a feasible assignment to the reference LP, where all constraints except
soft equalities are satisfied, and the cost of the soft equality corresponding to a vertex
vj is at most zj .

For feasibility, we first need to verify that edge constraints are satisfied at cost
zero. Let uv be an edge with corresponding vertex occurrences u(i), v(j). Observe
that the length of the shortest paths to u(i) and to v(j) are equal, as each path to the
one is a valid path to the other; thus u(i) and v(j) have identical frequencies, and the
question is if they have compatible modes. Let Pu be the shortest path that led to
the labelling of u(i), and similarly let Pv be the path to v(j). Note that both paths
have length less than 1/2. First, assume that Pv passes through u but not through v.
Then the last edge of Pv must be uv, and removing this edge leaves two incompatible
paths to u; furthermore, since z(u) was included in the cost of Pv, we have a double
path of length less than 1, which contradicts zi being feasible. Otherwise, Pu passes
through u and Pv passes through v, thus the costs z(u) resp. z(v) are included in
these. Extending Pu by the edge uv now creates a double path ending in v, of length
less than one, again contradicting feasibility.

Next, assume that vi is a vertex such that the cost of the soft equality for vertex
vi under φ (call this ci) is more than zi. Let vi(p), vi(q) be two occurrences of vi
maximising this cost, and let Pa resp. Pb be corresponding shortest paths. If vi(p)
and vi(q) have identical modes (or if at least one of them takes value 0), assume that
the former has higher frequency. But then z(Pa) > z(Pb)+zi, which is a contradiction
since the latter is the length of a possible path.

Otherwise vi(p) and vi(q) have distinct modes. Then (Pa, Pb) is a double path
ending in v. Now the cost ci > zi equals (1− z(Pa))− (1− (1− z(Pb))) = 1− z(Pa)−
z(Pb), i.e., the length of the double path is less than one, again contradicting that zi
are double-path-hitting. This finishes the proof.

We can conclude the following.

Lemma 5.7. The double path system has a half-integral optimum, and each such
optimum can be converted into an optimal solution for Half-Integral GFVS with
Assignments.

Proof. By Lemma 5.6, the cost of a set of double-path-hitting weights is at least
the cost of the reference LP; by Lemma 5.5, the costs are in fact identical, there is
a half-integral optimum for the double path system, and every such optimum can be
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interpreted as deletion values for an optimum for the original LP. By Lemma 5.4, we
can reconstruct an optimal full assignment for the VCSP from this information.

5.2.2. Separation oracle and wrap-up. It only remains to show that we can
solve the double path system, i.e., that we can produce a polynomial-time separation
oracle. This is not difficult. Let us first show a structural result. (Recall that our
notion of path length z(P ) does not take into account the weight of the end vertex of
P .)

Lemma 5.8. A set of weights zi is infeasible (i.e., fails to be double-path-hitting)
if and only if there is some non-null simple cycle C, passing through a vertex u, such
that z(C) + 2z(Pu) + z(u) < 1, where Pu is a shortest path to u.

Proof. For a vertex v, let `(v) = z(Pv) denote the length of a shortest path Pv to
v. On the one hand, let (Pa, Pb) be a double path of length less than 1, ending on v. If
the paths are disjoint, then they form a non-null simple cycle (passing through t, and
we have `(t) = 0). Otherwise, let H be the graph consisting of the edges traversed
by Pa and Pb, with edges used by both paths given multiplicity two. Observe that
H does not admit a consistent labelling, thus by Lemma 5.1, H contains a non-null
simple cycle C. Further, H is an even (Eulerian) graph with maximum degree four,
and the contribution of a vertex u to the length of the double path is 1

2dH(u)z(u)
where dH(u) is the degree of u in H. Now, let ua resp. ub be the first vertices of C
reached by Pa resp. Pb (both exist, since neither of Pa or Pb can contain all of C),
and let P ′a resp. P ′b be the corresponding path prefixes. Observe that ua and ub both
have multiplicity two in the double path (though we may have ua = ub). Assume
w.l.o.g. that z(P ′a) + z(ua) ≤ z(P ′b) + z(ub). The double path has length at least
z(P ′a) + z(P ′b) + z(ub) + z(C) ≥ 2z(P ′a) + z(ua) + z(C) ≥ 2`(ua) + z(ua) + z(C); hence
z(C) + 2`(ua) + z(ua) < 1.

On the other hand, let C be a non-null simple cycle, and let u be the vertex of
C closest to t. Let v be a vertex on C other than u. Create one path Pa going from
t to u and further on to v taking one way around the cycle, and a path Pb taking the
same way from t to u then further on to v taking the other way around the cycle.
Then (Pa, Pb) forms a double path of length exactly 2`(u) + z(u) + z(C) < 1.

Observe that it follows from the proof that there always exists a shortest double
path (Pa, Pb) such that Pa + Pb = 2Pu + C for some vertex u and cycle C.

Lemma 5.9. Double path systems have polynomial-time separation oracles.

Proof. Let us assume that all shortest paths have distinct lengths; this can be
achieved by replacing each weight zi by the pair (zi, 2

i) and handling weights lexico-
graphically (e.g., treating (z, b) as z + bε where ε is infinitesimal). (The uniqueness
now follows since shortest paths are induced.) By this, we find that every shortest
double path (Pa, Pb) contains one path, say Pa, which is the unique shortest path to
the endpoint (as otherwise one of Pa and Pb could be replaced by the shortest path).
By Lemma 5.8, we may also assume that Pa+Pb forms a graph like 2Pu+C for some
non-null cycle C. Pushing this further, we can conclude that for every vertex v on
C, the graph Pa + Pb contains the shortest path to v: For u, this is true by choice;
for any other vertex v, we may re-orient Pa + Pb to end at v, and perform the above
replacement. Thus, label every v ∈ C − u by “left” or “right” according to whether
the (unique) shortest path to v goes clockwise or counterclockwise through C after
passing u (give u both labels). Let vv′ be an edge in C whose endpoints have distinct
labels (this exists, though one endpoint may be u). By orienting Pu + C to a double
path ending in v 6= u, we get a (shortest) double path (Pa, Pb) ending at v, where Pa
is the shortest path to v, and Pb is the shortest path to v′. Thus finding a shortest
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double path has been reduced to finding two vertices v and v′, such that their total
distance from t (and their own weights) sum up to less than (1, 0), and such that the
resulting labels of the shortest paths are incompatible for the edge vv′. This can be
done simply by computing shortest paths.

We may finally wrap up.
Proof. [Proof of Theorem 5.2.] By Lemma 5.3, it suffices to be able to produce an

optimal solution to Half-integral GFVS with Assignments in the oracle access
group model; by Lemma 5.7, it suffices to be able to produce a half-integral optimum
to a double path system. By Lemma 5.9, double path systems can be optimised in
polynomial time. The only remaining detail is how to convert an arbitrary optimum
to a double path system into a half-integral one. This can be done as follows. Observe
that adding constraints zi = 1 and zi = 0 both create systems which correspond to
double path systems for smaller graphs, in the first case a graph where vi has been
deleted, in the second case a graph where vi has been bypassed (creating an edge vpvq
of the appropriate label for every 2-edge path vpvivq through vi), then deleted. Thus
the system retains a half-integral optimum after the addition of such constraints, and
we may simply iteratively add such constraints that fail to raise the optimal cost,
until it is an optimal solution to set zi = 1/2 for all remaining variables zi.

5.3. Implications. Theorem 5.2 provides the first single-exponential time algo-
rithm for both Group Feedback Vertex Set and Group Feedback Edge Set,
with a quite competitive running time; the existence of such an algorithm was an
open question in [16]. Via a reduction given in [16], we furthermore get an algorithm
with the same running time for Subset Feedback Vertex Set, which was also a
previously stated open problem [16].

We also observe that, e.g. via a group Zm2 , we can reduce the basic problem
Feedback Vertex Set to GFVS.3 While this problem already has faster FPT
algorithms (e.g., time O∗(3p) by the recent cut-and-count technique [15]), this is
the first LP-branching algorithm for the problem, which may be of interest by itself
(although the LP-formulation is admittedly somewhat obscure). Our algorithm also
distinguishes itself from previous work in that it never uses the iterative compression
technique.

Furthermore, we observe for completeness that for an explicitly given group Γ, we
can add the soft versions of constraints (u = a∨v = b) where a, b ∈ Γ to the repertoire,
and still get a single-exponential running time (say, O∗(32p) with a rough analysis).
Similarly to as in Section 5.1, we can for each such constraint simply branch on the
cases (u = a), (v = b) and the case that the constraint is false (details omitted). This
may be of interest for the general question of which VCSPs admit single-exponential
time FPT algorithms.

Finally, regarding the use of gap parameters, we note that while GFVS in “pure”
form always has a feasible all-relaxed solution of cost zero, the problem GFVS with
Assignments has a relaxation lower bound which is at least as large as the packing
number for paths inconsistent with the assignments. In particular, when modelling
Multiway Cut, this number equals the Mader-path packing number (see [17]), and
thus the above algorithm, applied to Multiway Cut, is O∗(2p) (as in [17]). Similar

3We encourage the interested reader to investigate the question of how large the group Γ needs
to be to encode FVS in GFVS. In other words, what is the smallest group Γ with which you can label
the edges of Kn so that every simple cycle becomes non-null? Our best upper and lower bounds are
O(nn) and Ω(n), respectively (although stronger lower bounds hold for Abelian groups). Note that
many natural suggestions fail since labels are direction-dependent.
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statements can be made about FVS: if v is a vertex of a graph G for which it has
been decided that v is not to be deleted, then (but only then) we may use as a lower
bound the “v-flower number”, i.e., the maximum number of circuits one can pack,
each incident on v but otherwise pairwise disjoint.

6. Linear-time FPT algorithms. In the previous sections, we have shown
that if a problem can be relaxed to basic k-submodular functions, then it can be
solved in FPT time. In this section, we show that, if a problem admits a binary basic
k-submodular relaxation, then it can be solved in linear-time FPT by computing a
network flow and exploiting the structure of the minimum cuts.

Let D = {1, 2, . . . , k} be a domain and D′ = {0} ∪D be the relaxed domain. We
say that a minimum solution x ∈ D′X of a function f ′ : D′X → R is dominated by a
minimum solution y ∈ D′X if x 6= y and for any i ∈ X it holds that xi 6= 0⇒ xi = yi.
If there are no such y, we say that x is an extreme minimum solution. In what follows,
we prove the following theorem.

Theorem 6.1. Let f ′ : D′X → N be a sum of m binary basic k-submodular func-
tions. Then, we can compute an extreme minimum solution of f ′ in O((min f ′)km)
time.

Let x∗ be the obtained extreme minimum solution of the function f ′. Then,
for any variable v ∈ X such that x∗v = 0 and for any value i ∈ D, fixing xv to i
together with the integral part of x∗ strictly increases the optimal value of f ′. Thus
Theorem 6.1 implies the following corollary.

Corollary 6.2. If a function f can be relaxed to a sum of m binary ba-
sic k-submodular functions f ′, then it can be minimised in O(k2(min f−min f ′)+1m +
(min f ′)km) time.

Here, a naive algorithm takes O(k2(min f−min f ′)+1(min f)m) time because it takes
O((min f)km) time to compute an extreme minimum solution on each branching
node. However, we can easily separate the coefficient of min f because we can reuse
the previous minimum solution before a branching to recompute the new minimum
solution after the branching by searching augmenting paths of a network. Since this
optimisation is not important to achieve linear time complexity, it is deferred to
Appendix C.

As we have seen in Section 3, both clause-deletion and variable-deletion versions
of Almost 2-SAT admit binary basic bisubmodular relaxations. Thus Corollary 6.2
implies that they can be solved in O(4pm) time where m is the number of clauses
(as was also shown in [29]). Moreover, as we have seen in Section 4, edge-deletion
Unique Label Cover admits a binary basic |Σ|-submodular relaxation. Thus it
can be solved in O(|Σ|2pm) time where m is the number of edges.

In order to prove Theorem 6.1, we first introduce some definitions. For a directed
graph G = (V,E) and its vertex subset S ⊆ V , we denote the edges outgoing from
S by δ+(S) and the edges incoming to S by δ−(S). When S is a single-element set
{v}, we write δ+(v) and δ−(v), respectively. For a vertex subset S ⊆ V , we denote
the out-neighbors of S by N+(S) = {v ∈ V \ S | ∃u ∈ S, uv ∈ E}. For a function
f : U → R, we denote the sum of f(a) over a ∈ S ⊆ U by f(S) =

∑
a∈S f(a). A

vertex set S ⊆ V is called closed if δ+(S) is an empty set. A vertex set S ⊆ V is
called strongly connected if for any two vertices u, v ∈ S, there is an directed path
from u to v in S. It is known that we can compute strongly connected components
in O(|V |+ |E|) time. We call a strongly connected component by an scc for short.

A network is a pair (G, c) of a directed graph G = (V,E) and a capacity function
c : E → R≥0. For s, t ∈ V , an s-t flow of amount M is a function f : E → R≥0 that
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satisfies f(e) ≤ c(e) for any e ∈ E and

f(δ+(v))− f(δ−(v)) =


M for v = s,

−M for v = t,

0 for any v ∈ V \ {s, t}.

For convenience, we define c(e) = f(e) = 0 if e 6∈ E. A vertex subset S is called an s-t
cut if s ∈ S and t 6∈ S, and its capacity is defined as c(S) = c(δ+(S)). The residual
graph of a network (G, c) with respect to a flow f is the directed graph Gf = (V,Ef )
with Ef = {(u, v) | f(u, v) < c(u, v) or f(v, u) > 0}.

Let f : D′X → R be a function on a domain D′ = {0, 1, 2, . . . , k}. Now, we
aim to express f as cuts of a network. For a variable v ∈ X, we denote a vertex set
{vi | i ∈ D} by Xv. An (X, k)-network is a network on vertices V =

⋃
v∈X Xv∪{s, t}.

For an assignment φ : X → D′, we define the s-t cut corresponding to φ as the set
of vertices consisting of vφ(v) for each variable v ∈ X such that φ(v) 6= 0 together
with s, which is denoted as Sφ. That is, Sφ = {s} ∪ {vφ(v) | v ∈ X,φ(v) 6= 0}. If an
s-t cut contains at most one vertex from each Xv, it is called normalised. Note that
Sφ is a normalised cut for any φ. For a normalised cut S, we define the assignment
corresponding to S as φS(v) = i if S∩Xv = {vi} and φS(v) = 0 if S∩Xv = ∅. We say
that an (X, k)-network represents f if for any assignment φ : X → D′, the capacity
of the corresponding cut Sφ is equal to the value of the function f(φ). We say that
a function f is representable if there is an (X, k)-network that represents f . For an
s-t cut S ⊆ V , we define the normalised cut of S, which is denoted by ν(S), as the
set of vertices consisting of S ∩ Xv for each variable v ∈ X such that |S ∩ Xv| = 1
together with s. That is, ν(S) = {s} ∪ {vi | v ∈ X,S ∩Xv = {vi}}. We say that an
(X, k)-network is k-submodular if for any s-t cut S, it holds that c(S) ≥ c(ν(S)). If
there is a k-submodular (X, k)-network that represents a function f , we say that f is
k-submodular representable. A normalised minimum cut S is called dominated by a
normalised minimum cut S′ if it holds that S ⊂ S′. If there are no such S′, we say
that S is an extreme minimum cut.

Lemma 6.3. Let f : D′X → R be a sum of functions f1, . . . , fm. If for each
summand function fi on variables Yi ⊆ X, there exists an (Yi, k)-network (Gi =
(
⋃
v∈Yi

Xv ∪{s, t}, Ei), ci), then their sum (G = (
⋃
v∈X Xv ∪{s, t},

⋃m
i=1Ei),

∑m
i=1 ci)

is an (X, k)-network that represents f . If each network is k-submodular, then the sum
of the networks is also k-submodular.

Proof. Trivial because the capacity of the cut on
∑m
i=1 ci is equal to the sum of

the capacities of the cut on each ci.
Lemma 6.4. If a function f is k-submodular representable, then f can be min-

imised by computing the minimum s-t cut of the network.
Proof. Since the network represents f , for any assignment φ, it holds that c(Sφ) =

f(φ). Let φ be a minimiser of f , and let S be a minimum s-t cut of the network.
Because the network is k-submodular, ν(S) is also a minimum s-t cut. Therefore,
f(φν(S)) = c(ν(S)) ≤ c(Sφ) = f(φ) holds. Since φ is a minimiser of f , φν(S) is also a
minimiser of f .

In order to obtain an extreme minimum solution, we prove the following one-to-
one correspondence between the extreme minimum solution and the extreme minimum
cut.

Lemma 6.5. Let f : D′X → R be a function and (G, c) be a k-submodular network
that represents f . Then, an assignment φ : X → D′ is an extreme minimum solution
if and only if its corresponding cut Sφ is an extreme minimum cut.
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Proof. (⇒) Let S be a normalised minimum cut. If there exists a normalised
minimum cut S′ that dominates S, then, from the definition, it holds that φS 6= φS′

and φS(v) 6= 0⇒ φS(v) = φS′(v). Thus, φS is not an extreme minimum solution.

(⇐) Let φ be a minimum solution. If there exists a minimum solution φ′ that
dominates φ, then, from the definition, it holds that Sφ ⊂ Sφ′ . Thus, Sφ is not an
extreme minimum cut.

From the above lemma, in order to compute an extreme minimum solution, it suf-
fices to compute an extreme minimum cut. In order to compute an extreme minimum
cut, we introduce the following one-to-one correspondence between the minimum s-t
cut and the closed vertex set of the residual graph.

Lemma 6.6 (Picard and Queyranne [45]). For any network, its two vertices s, t,
and its maximum s-t flow f , an s-t cut S is a minimum cut if and only if S is a
closed set containing s in the residual graph with respect to f .

Note that a maximum s-t flow in the lemma is arbitrary. This lemma reveals
a nice structure of the all minimum cuts: although there exist exponentially many
minimum cuts in a network, we can find an extreme one in linear-time as the following
lemma.

Lemma 6.7. Let (G, c) be a k-submodular (X, k)-network and f be a maximum s-
t flow of the network. Then, an extreme minimum cut of the network can be computed
in O(|V |+ |E|) time.

Proof. The algorithm is described in Algorithm 1. First, we compute the strongly
connected components of the residual graph Gf . From Lemma 6.6, for each strongly
connected component T , any minimum cut must contain all of T or none of T . Then
we compute the vertex set S reachable from s in Gf . Since this is a closed set
containing s, it is a minimum cut. Suppose that S is not a normalised cut. Since the
network is k-submodular, ν(S) ⊂ S is also a minimum cut. From Lemma 6.6, this
means that there are no outgoing edges from ν(S) in Gf , which contradicts the fact
that S is the set reachable from s. Thus, S is a normalised minimum cut. From now
on, we modify S to be an extreme minimum cut by expanding it. Let T ⊆ V \ S be
a strongly connected component that satisfies the following two conditions:

1. All the outgoing edges from T are coming into S.
2. The cut S ∪ T is normalised.

If there exists a strongly connected component T that satisfies the first condition, the
cut S ∪ T also becomes a closed set. Thus it is a minimum cut. If there exists T
that satisfies both of the conditions, we can obtain a new normalised minimum cut by
expanding S to S∪T . If there are no such T , S is an extreme cut. This is because any
minimum cut S′ ⊃ S must contain at least one of the strongly connected components
that satisfy the condition 1, but including any of them does not lead to a normalised
cut.

Finally, we analyze the running time of the algorithm. We can compute the
strongly connected components in O(|V | + |E|) time. In order to efficiently find a
strongly connected component that satisfies the condition 1, for each strongly con-
nected component T , we keep track of the number of edges outgoing from T to the
vertices outside S. If this number is zero, it satisfies the condition 1. When updating
S to S ∪ T , for each edge uv ∈ δ−(T ), we decrement the number for the strongly
connected component that contains u. This takes only O(|δ−(T )|) time for each T .
Thus it takes only O(|E|) time in total. If a strongly connected component T does not
satisfy the condition 2 for some S, it will never satisfy the condition for any S′ ⊃ S.
Therefore, we don’t have to check the same strongly connected component multiple
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Algorithm 1 Algorithm to compute an extreme minimum cut.

INPUT: the residual graph Gf of an (X, k)-network
OUTPUT: an extreme minimum cut

1: compute the strongly connected components
2: S ← the vertices reachable from s
3: while ∃ unchecked scc T such that N+(T ) ⊆ S do
4: if S ∪ T is a normalised cut then
5: S ← (S ∪ T )

6: return S
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𝑣𝑘

𝑡

…
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Fig. 6.1. Unary f(v)
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…
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… …

Fig. 6.3. (u = d ∨ v = d′)

times. Thus the total running time is O(|V |+ |E|).
Now we show that any binary basic k-submodular function is k-submodular rep-

resentable. For the definition of the basic k-submodular functions, please refer to
Lemma 4.3.

Lemma 6.8. Any unary function f : D′ → R is k-submodular representable.

Proof. By subtracting the minimum value of f , we can assume that f is nonneg-
ative. Let d1 = arg mind∈D f(x). Then, we construct a ({v}, k)-network as follows
(Figure 6.1):

• c(s, vd1) = f(0),
• c(vd1 , t) = f(d1),
• c(vd, t) = f(d)− f(0) for any d 6= d1.

Note that, for d 6= d1, f(d) − f(0) ≥ 0 holds because it holds that 2f(0) ≤ f(d1) +
f(d) ≤ 2f(d).

If φ(v) = 0, the capacity of the corresponding cut is c(Sφ) = c(s, vd1) = f(0). If
φ(v) = d1, the capacity of the corresponding cut is c(Sφ) = c(vd1 , t) = f(d1). If φ(v) =
d for d 6= d1, the capacity of the corresponding cut is c(Sφ) = c(s, vd1)+c(vd, t) = f(d).
Thus the network actually represents f .

Let D′ ⊆ D be a set of size at least 2 and let S = {s} ∪ {vd | d ∈ D′} be a
cut. When D′ does not contain d1, let d2, d3 be distinct elements contained in D′.
Then, c(S) is at least c(s, vd1) + c(vd2 , t) + c(vd3 , t) = f(d2) + f(d3) − f(0). Since
f is k-submodular, f(d2) + f(d3) ≥ 2f(0). Therefore, c(S) ≥ f(0) = c(ν(S)) holds.
When D′ contains d1, let d2 be another element contained in D′. Then, c(S) is at
least c(vd1 , t) + c(vd2 , t) = f(d1) + f(d2) − f(0) ≥ f(0). Therefore, c(S) ≥ c(ν(S))
holds. Thus the network is actually k-submodular.

27



Lemma 6.9. For any permutation π on D, the basic k-submodular relaxation f
of the soft version of a constraint (x = π(y)) is k-submodular representable.

Proof. Let u, v be variables. We construct a ({u, v}, k)-network as follows (Fig-
ure 6.2):

• c(ui, vπ(i)) = 1
2 for any i ∈ D,

• c(vj , uπ−1(j)) = 1
2 for any j ∈ D.

If φ(u) = φ(v) = 0, the capacity of the corresponding cut is c(Sφ) = 0 = f(φ).
If φ(u) = i ∈ D and φ(v) = 0, the capacity of the corresponding cut is c(Sφ) =
c(ui, vπ(i)) = 1

2 = f(φ). Similarly, if φ(u) = 0 and φ(v) 6= 0, the capacity of the
corresponding cut is equal to f(φ). If φ(u) = i ∈ D,φ(v) = j ∈ D and j = π(i), the
capacity of the corresponding cut is c(Sφ) = 0 = f(φ). Otherwise, the capacity of
the corresponding cut is c(Sφ) = c(ui, vπ(i)) + c(vj , uπ−1(j)) = 1 = f(φ). Thus the
network actually represents f .

Let S be a cut and I, J be two sets such that I = {i ∈ D | ui ∈ S} and
J = {j ∈ D | vj ∈ S}. If |I| ≤ 1 and |J | ≤ 1, the cut S is already normalised.
If |I| = 0 or |I| ≥ 2, and |J | = 0 or |J | ≥ 2, the capacity of the normalised cut is
c(ν(S)) = c({s}) = 0 and the capacity of the original cut is nonnegative. Therefore,
c(S) ≥ c(ν(S)) holds. If I = {i} and |J | ≥ 2, the capacity of the normalised cut is
c(ν(S)) = c({s, ui}) = c(ui, vπ(i)) = 1

2 . Because π is a permutation, for at least one
j ∈ J , π−1(j) is different from i. Therefore, the capacity of the original cut is at least
1
2 . Thus, it holds that c(S) ≥ c(ν(S)). Similarly, if |I| ≥ 2 and |J | = 1, it holds that
c(S) ≥ c(ν(S)). Thus, the network is actually k-submodular.

Lemma 6.10. For any d, d′ ∈ D, the basic k-submodular relaxation f of the soft
version of a constraint (x = d ∨ y = d′) is k-submodular representable.

Proof. Let u, v be variables. We construct a ({u, v}, k)-network as follows (Fig-
ure 6.3):

• c(ui, vd′) = 1
2 for any i ∈ D \ {d},

• c(vj , ud) = 1
2 for any j ∈ D \ {d′}.

If φ(u) = φ(v) = 0, φ(u) = d, or φ(v) = d′, the capacity of the corresponding
cut is c(Sφ) = 0 = f(φ). If φ(u) = i ∈ D \ {d} and φ(v) = 0, the capacity of
the corresponding cut is c(Sφ) = c(ui, v

′
d) = 1

2 = f(φ). Similarly, if φ(u) = 0 and
φ(v) ∈ D \ {d′}, the capacity of the corresponding cut is equal to f(φ). If φ(u) =
i ∈ D \ {d}, φ(v) = j ∈ D \ {d′}, the capacity of the corresponding cut is c(Sφ) =
c(ui, vd′) + c(vj , ud) = 1 = f(φ). Thus the network actually represents f .

Let S be a cut and I, J be two sets such that I = {i ∈ D | ui ∈ S} and
J = {j ∈ D | vj ∈ S}. If |I| ≤ 1 and |J | ≤ 1, the cut S is already normalised.
If |I| = 0 or |I| ≥ 2, and |J | = 0 or |J | ≥ 2, the capacity of the normalised cut is
c(ν(S)) = c({s}) = 0 and the capacity of the original cut is nonnegative. Therefore,
c(S) ≥ c(ν(S)) holds. If I = {d} and |J | ≥ 2, both of the normalised cut and
the original cut have the capacity zero. If I = {i} for i 6= d and |J | ≥ 2, since J
contains at least one element j which is different from d′, the capacity of the original
cut is at least c(vj , ud) = 1

2 . On the other hand, the capacity of the normalised cut
is c(ν(S)) = c(ui, v

′
d) = 1

2 . Therefore, it holds that c(S) ≥ c(ν(S)). Similarly, if
|I| ≥ 2 and |J | = 1, it holds that c(S) ≥ c(ν(S)). Thus, the network is actually
k-submodular.

Finally, we prove Theorem 6.1.

Proof. [Proof of Theorem 6.1] By using Lemmas 6.8–6.10, we can construct a
k-submodular (X, k)-network (G, c) that represents f in O(|G|) time. Since we create
O(k) edges per each summand function fi, the size of the network is O(km). Because
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the capacity of the minimum cut of the network is equal to min f and each capacity is
a multiple of 1

2 , we can compute the maximum flow of the network in O((min f)km)
time. Then, by using Lemma 6.7, we can compute an extreme minimum cut in O(km)
time. Finally, by using Lemma 6.5, we can obtain an extreme minimum solution. The
total running time is O((min f)km).

7. Conclusions and open problems. We have shown that half-integrality and
LP-branching can be powerful tools for FPT-algorithms, beyond just Vertex Cover
and Multiway Cut. We have outlined how to use CSP tools to find and study such
relaxations. As an application, we have given new half-integral relaxations for Unique
Label Cover and Group Feedback Vertex Set, in both cases improving the
running time asymptotically (to single-exponential for fixed label set, resp. to uncon-
ditionally single-exponential). Several directions of further study suggest themselves.
Is there a way to decide the existence of discrete relaxations in general? Can directed
problems, e.g., Directed Feedback Vertex Set be handled in a similar manner?
Finally, can the basic tool of LP-branching be complemented with more sophisticated
algorithmic approaches (e.g., FPT-time separation oracles, or tools from semi-definite
programming)?

In other directions, we note that several of the covered problems have polynomial
kernels for specific cases, e.g., Group Feedback Vertex Set with bounded-size
group [38] and Feedback Vertex Set [52]; it is an interesting question how far this
can be generalised.

We also note that oracle minimisation of k-submodular functions is an open ques-
tion; we also welcome more investigation into k-submodular functions in general (in-
cluding, e.g., any possible connections to path-packing systems as in [12, 13, 43, 44],
and algebraic algorithms generalising those for matching; see also [54]).

As for linear-time complexity, we have shown that edge-deletion Unique Label
Cover can be solved in linear-time. It is known that Multiway Cut, a special case
of Unique Label Cover, can be solved in linear-time even for the node-deletion ver-
sion [29]. It is an interesting question whether node-deletion Unique Label Cover
can also be solved in linear-time. In order to obtain linear-time FPT algorithms,
we have shown that we can minimize a sum of basic binary k-submodular functions
via network flow. We left whether it is possible to minimize a sum of any binary
k-submodular functions in a similar way or not as an open problem.

Acknowledgements. The second author thanks Marek Cygan, Andreas Kar-
renbauer, Johan Thapper and Stanislav Živný for enlightening discussions.
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Appendix A. On the crisp solution structure supported by the algo-
rithms.

Now, we discuss the crisp solution structure supported by bisubmodular and k-
submodular functions (in particular, we prove Lemma 4.4).

To illustrate the topic, let us focus on the (well-understood) case of submodular
functions. It is known that for a submodular function f : 2V → R, one can not
only minimise f(S) efficiently in an unconstrained setting, but also subject to a ring
family. Recall that a ring family is a set family F ⊆ 2V which is closed under union
and intersection, i.e., if A,B ∈ F then A∪B,A∩B ∈ F . The constrained optimisation
problem is then minS∈F f(S), which can be solved in polynomial time even if f is
only given via oracle access (see Schrijver [49]).

Now observe that the conditions on a ring family are actually polymorphisms of
the relation R(S) = (S ∈ F). Indeed, it is known that a relation R ⊆ 2V is closed
under union and intersection if and only if R can be modelled as the set of solutions
to a formula using constraints (x → y), (x = 0), and (x = 1) (e.g., the set of closed
vertex sets in a digraph). Furthermore, if f is a submodular function, then the set
of minimising assignments A = {A ⊆ V : f(A) = minS f(S)} is itself closed under
union and intersection (by applying the submodularity condition f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B) to two minimising assignments A,B ∈ A). Thus, if we want
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to implement some crisp solution structure on the search space 2V by only using
the power of submodular functions, then this restriction must take the shape of a
ring family, and if it does, then it is sufficient to implement the crisp constraints
(x→ y), (x = 0), and (x = 1), which can be done by using their soft versions at very
high cost; these soft versions are submodular, which closes the loop.

Expressed more succinctly, if one wants to perform constrained minimisation of a
submodular function without using any algorithm more powerful than basic (uncon-
strained) submodular minimisation, then the power one has at hand is exactly that of
crisp implications and assignments. We will investigate the same for functions with
bisubmodular or k-submodular relaxations. Let us finally remark that this is not a
restriction on submodular functions themselves; submodular functions in general are
far more expressive than digraph cut functions (this has been proven formally in [55]).

A.1. Bisubmodular relaxations. We now consider the bisubmodular case of
the above, i.e., relaxations of functions fi : 2V → R into bisubmodular functions f ′i :
{0, 1/2, 1}V → R. We consider the structure of the minimising set A when restricted
to integral assignments (i.e., those half-integral minimisers of f ′ which happen to also
be integral; note that this may well be an empty set). We find that Bisubmodular
Cost 2-SAT exactly captures its structure.

Lemma A.1. Let f : {0, 1/2, 1}V → R be a bisubmodular function, and A ⊆
{0, 1/2, 1}V be its set of minimising assignments. Then the integral global minimisers
A ∩ {0, 1}V of f can be modelled as the set of solutions to a (crisp) 2-CNF formula
F on V .

Proof. Let A01 = A ∩ {0, 1}V . We will show that A01 can be described by a
2-CNF formula. As discussed above for the submodular case, A as a whole must be
closed under the operations u and t, i.e., t and u are polymorphisms of A. Define
h(A,B,C) = (((AuB)t (AuC))t (B uC)); then h is a ternary polymorphism of A,
and it can be verified that h is a majority operation. Thus A is fully described by the
binary constraints that it implies (see preliminaries). In turn, each binary constraint
R(x, y) can of course be described by enumerating the forbidden values of the pair
(x, y). Thus, for every point in φ ∈ {0, 1}n which is not a point of A01, there is a
binary constraint R(x, y) which rejects it. All such binary constraints on {0, 1} can
be described via 2-clauses.

A.2. k-Submodular relaxations. For k > 2, the situation is more complicated
than above. The setup is the same: if A ⊆ {0, . . . , k}V is the set of minimising
assignments to a k-submodular function f , then we look at the structure of the subset
Aint = A ∩ {1, . . . , k}V of those assignments which are also integral. As before, the
structure can be defined by a formula over binary (crisp) constraints, however, the
set of binary constraints we can use is limited. As stated in Lemma 4.4, it turns out
that the binary constraints of Lemma 4.3 is exactly the right list.

Proof. [Proof of Lemma 4.4.] To begin with, we observe as in the proof of
Lemma A.1 that binary (and unary) constraints must suffice to describe the structure.
In fact, the same construction of a majority polymorphism h(A,B,C) from u and t
applies directly for k > 2, hence A, and by implication Aint, is fully characterised by
its 2-variable projections. The remaining task is thus to characterise those crisp binary
constraints on domain {1, . . . , k} whose soft versions have bisubmodular relaxations.
By Lemma 4.3, we can support arbitrary unary constraints, thus we focus on the
properly binary constraints.

For the rest of the proof, we let R ⊆ {0, . . . , k}2 be a binary relation closed
under t and u. We will characterise the possible sets R ∩ {1, . . . , k}2 of integral
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pairs satisfying R. Let S1 = {a ∈ {1, . . . , k} : (a, b) ∈ R for some b} and S2 = {b ∈
{1, . . . , k} : (a, b) ∈ R for some a} be the integral values that occur in positions 1 and
2 of R, respectively; they can be assumed to be non-empty, as otherwise R is simply
a conjunction of an assignment and a unary constraint.

We begin by a useful property.
Claim 10. If (a, 0) ∈ R for some a ∈ S1, then for every b ∈ S2 we have (a, b) ∈ R.

Thus in particular, for every a ∈ S1 there is some b ∈ S2 such that (a, b) ∈ R.
Proof. If (0, b) ∈ R, then we have (a, b) ∈ R by (a, 0) t (0, b) = (a, b).
On the other hand, if (a′, b) ∈ R for some a′ ∈ S1 with a′ 6= a, then (0, b) ∈ R by

(a′, b) t (a, 0) = (0, b), and we are back in the first case.
We eliminate some quick corner cases. Recall that we are focusing on expressing

Aint via binary relations, rather than all of A; hence if the intersection of R with
{1, . . . , k}2 is simple, we may ignore complications involving the value 0. In particular,
consider the case that |S1| = 1, say S1 = {a}. By the above, (a, b) ∈ R for every
b ∈ S2, implying that the effect of R(x, y) on Aint is simply the conjunction of (x = a)
and (y ∈ S2). We claim similarly if |S2| = 1. Thus in the sequel, we have |S1|, |S2| > 1.

We give the next useful observation.
Claim 11. For any a ∈ S1, either there is exactly one value b ∈ S2 such that

(a, b) ∈ R, or (a, b) ∈ R for every b ∈ S2. Symmetrically, for any b ∈ S2, either there
is exactly one value a ∈ S1 such that (a, b) ∈ R, or (a, b) ∈ R for every b ∈ S1.

Proof. We prove the claim for some a ∈ S1; the other half is entirely symmet-
ric. Recall that (a, b) ∈ R for at least one b ∈ S2, by previous claims. Thus let
(a, d), (a, d′) ∈ S for d, d′ ∈ S2, d 6= d′; this produces (a, 0) ∈ R via the polymorphism
t, and by the previous claim (a, b) ∈ R for every b ∈ S2, as claimed.

We call a value a ∈ S1 (resp. b ∈ S2) global if the second case occurs, i.e., if
(a, d) ∈ R for every d ∈ S2 (resp. (d, b) ∈ R for every d ∈ S1). We may assume that
each of S1 and S2 contains at most one global value: if S1 contains two global values
a, a′, then every value in S2 must be global, and since |S2| > 1 we get that every value
in S1 is global, and the effect of R on Aint can be described via unary constraints.

Furthermore, if a ∈ S1 and b ∈ S2 are global values, then for any a′ ∈ S1, a′ 6= a,
we have that (a′, b) ∈ R is the unique occurrence of a′ in R; hence the effect of R(x, y)
on Aint can be given as (x = a ∨ y = b) in conjunction with unary constraints. Note
that this is case 3 of Lemma 4.3.

Second, assume that S2 contains no global values, but a ∈ S1 is global. But there
is one further a′ ∈ S1, with (a′, b) ∈ R for some b ∈ S2 by Claim 10; hence b is global
and we are back at a previous case.

Finally, if there are no global values, then the values of S1 and S2 must be
matched to each other with exactly one possible value each. We may thus describe
R as a bijection (x = π(y)) in conjunction with a unary constraint, i.e., case 2 of
Lemma 4.3. This finishes the proof.

Note that this is not a complete characterisation of the full set A of minimisers,
since we skipped some “corner cases” that become uninteresting when intersected with
{1, . . . , k}V . Also note, as in the discussion for submodular functions, that this does
not imply that Lemma 4.3 can produce all functions with k-submodular relaxations,
as valued constraints taking several values (beyond 0 and 1) are not covered, and
these may well be the most interesting cases (cf. matroids for the submodular case).

Appendix B. Basic k-submodular functions: Case analysis.
Finally, we go through the case analysis required to show that all the relaxations

listed in the proof sketch of Lemma 4.3 are actually k-submodular.
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Proof. [Full proof of Lemma 4.3.] Case 1. Let f be a unary function of {1, . . . , k},
and f ′ the relaxation to {0, . . . , k} as in the proof sketch. Consider two domain values
x and y. If x and y are integral and distinct, then xuy = xty = 0, and the inequality
holds; otherwise, the outputs x u y and x t y are a reordering of the inputs.

Case 2. For the bijection case, let f be the relaxation, and consider two evalua-
tions f(x1, y1) and f(x2, y2). We refer to (x1, y1) and (x2, y2) as the input, and the
tuples of the resulting right-hand-side (after application of u and t) as the output.
We split the proof by the number of variables x1, y1, x2, y2 that take the value zero.
If none of them takes the value zero, then either the output equals the input, or the
output is all-zero, or the output has one all-zero column and the input costs at least
1; all these satisfy the k-submodularity inequality. If one input, say (x1, y1), equals
(0, 0), then the output equals the input.

If exactly one value is zero, assume w.l.o.g. that x1 = d and x2 = 0; the same two
values occur in the output (in the first “column”), and we note that the other two
output values (the second “column”) equal each other. Thus either the output equals
the input, or the output has an all-zero column and cost 1⁄2, while the input costs at
least as much.

If x1 = x2 = 0 but y1, y2 6= 0 (or similarly with x and y swapped), then either the
output equals the input, or the output has cost zero. Finally, with two zero-values
in different columns and tuples, the input costs 1/2 + 1/2 and the output contains one
tuple (0, 0) at cost zero. This finishes the case.

Case 3. Let fd,d′ be the function defined in the proof sketch; we show that it
is k-submodular.

Refer to d in the first coordinate, or d′ in the second coordinate, as a safe co-
ordinate; note that fd,d′ can be viewed as taking cost 0 if at least one coordinate is
safe, and otherwise 1⁄2 times the number of non-safe integral coordinates. We split
into cases. First, assume that one column of the output contains two integral non-
safe values. Then this column must be constant in input and output. If the other
output column contains two zeros, then the output costs 1 and the input costs either
at least 1 + 0 or 1/2 + 1/2. With one zero, the output is a reordering of the input, and
nothing is changed. With no zeros, input and output are constant and identical.

Second, assume that both output columns contain one non-safe integral value
each. Then the output is (0, 0) and (a, b), where a and b are non-safe, but then
the output columns are just reorderings of the input columns, so the input costs
either 1/2 + 1/2 or 1 + 0.

In the last cases, the total number of non-safe integral values in the output is
either 0, at output cost zero, or 1. In the last case, the maximum total output cost
is 1⁄2, in which case the non-safe column of the output is 0, a for some a, the parallel
column is 0, 0, and the input contains either a tuple (a, 0) or (0, b) for unsafe integral
values a, b.

Case 4. We show k-submodularity. Consider the total cost of the input. If the
input has total cost zero, then the output is either all-zero or identical to the input.
If the input has a tuple of cost zero, it must be constant, say (x, . . . , x). If x = 0,
then the output equals the input; otherwise, the output uses only values 0 and x. The
u-tuple contains x if and only if x occurs in the other tuple; the t-tuple contains 0 if
and only if some x′ /∈ {0, x} occurs in the other tuple. Each event “costs” at most 1⁄2,
and if both events occur, the input costs 1.

If the input cost is 1/2 + 1/2, then there are similarly two essential cases (the non-
zero entries are identical or different), both of which have an output of total cost at
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most 1. Otherwise, the input costs at least 1 + 1/2, and the output can only cost 1 + 1
if there are two distinct constant non-zero columns in the input (in which case the
input costs 1 + 1).

Appendix C. Updating the Maximum Flow. We will explain how to recom-
pute a maximum flow efficiently. From the correspondence between minimum cuts
and minimum solutions (Lemma 6.4), fixing a variable xv to a value i corresponds to
identifying vi as the source s and the other vertices Xv \ {vi} as the sink t. Thus a
maximum flow remains a flow (which may not be the maximum) after this fixing, and
we will update it to the maximum one by searching augmenting paths. Let d be the
increase of the optimal relaxation value min f ′ after a branching. We can update the
flow by searching an augmenting path 2d times, which can be done in O(dkm) time.
Let T (p) be the time complexity for computing an integral solution of value at most
min f ′ + p. Then, we obtain the recurrences T (p) ≤ kT (p − d) + O(dkm). Here, we
note that d is upper bounded by p because when we find more than 2p augmenting
paths, the relaxation lower bound exceeds the value of the integral solution we want
to find and we can immediately prune the search without finishing the update of
the maximum flow. The worst case is achieved when d = 1

2 and we obtain the time
complexity of O(k2p+1m). Since it takes O((min f ′)km) time to compute the initial
maximum flow, the total running time becomes O(k2(min f−min f ′)+1m+(min f ′)km).
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