78 research outputs found

    SIRT1 Overexpression Antagonizes Cellular Senescence with Activated ERK/S6k1 Signaling in Human Diploid Fibroblasts

    Get PDF
    Sir2, a NAD-dependent deacetylase, modulates lifespan in yeasts, worms and flies. The SIRT1, mammalian homologue of Sir2, regulates signaling for favoring survival in stress. But whether SIRT1 has the function to influence cell viability and senescence under non-stressed conditions in human diploid fibroblasts is far from unknown. Our data showed that enforced SIRT1 expression promoted cell proliferation and antagonized cellular senescence with the characteristic features of delayed Senescence-Associated β-galactosidase (SA-β-gal) staining, reduced Senescence-Associated Heterochromatic Foci (SAHF) formation and G1 phase arrest, increased cell growth rate and extended cellular lifespan in human fibroblasts, while dominant-negative SIRT1 allele (H363Y) did not significantly affect cell growth and senescence but displayed a bit decreased lifespan.. Western blot results showed that SIRT1 reduced the expression of p16INK4A and promoted phosphorylation of Rb. Our data also exposed that overexpression of SIRT1 was accompanied by enhanced activation of ERK and S6K1 signaling. These effects were mimicked in both WI38 cells and 2BS cells by concentration-dependent resveratrol, a SIRT1 activator. It was noted that treatment of SIRT1-.transfected cells with Rapamycin, a mTOR inhibitor, reduced the phosphorylation of S6K1 and the expression of Id1, implying that SIRT1-induced phosphorylation of S6K1 may be partly for the decreased expression of p16INK4A and promoted phosphorylation of Rb in 2BS. It was also observed that the expression of SIRT1 and phosphorylation of ERK and S6K1 was declined in senescent 2BS. These findings suggested that SIRT1-promoted cell proliferation and antagonized cellular senescence in human diploid fibroblasts may be, in part, via the activation of ERK/ S6K1 signaling

    Effects of supervised exercise training on lower-limb cutaneous microvascular reactivity in adults with venous ulcers

    Get PDF
    Purpose: To investigate the effects of a 12-week supervised exercise programme on lower-limb cutaneous microvascular reactivity in adults with venous leg ulceration. Methods: Thirty-eight adults with unilateral venous ulceration who were being treated with lower-limb compression therapy (58% male; mean age 65 years; median ulcer size 5 cm2) were randomly allocated to exercise or control groups. Exercise participants (n=18) were invited to attend thrice weekly sessions of lower-limb aerobic and resistance exercise for 12 weeks. Cutaneous microvascular reactivity was assessed in the gaiter region of ulcerated and non-ulcerated legs at baseline and 3 months using laser Doppler fluxmetry coupled with iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous vascular conductance (CVC) was calculated as laser Doppler flux (AU)/mean arterial pressure (mmHg). Results: Thirty-seven participants completed follow-up assessments. Median class attendance was 36 (range 2 to 36). Analyses of covariance revealed greater peak CVC responses to ACh in the exercise group at 3 months in both the ulcerated (adjusted difference = 0.944 AU/mmHg; 95% CI 0.504 to 1.384) and non-ulcerated (adjusted difference = 0.596 AU/mmHg; 95% CI 0.028 to 1.164) legs. Peak CVC responses to SNP were also greater in the exercise group at 3 months in the ulcerated leg (adjusted difference = 0.882 AU/mmHg; 95% CI 0.274 to 1.491), but not the non-ulcerated leg (adjusted difference = 0.392 AU/mmHg; 95% CI -0.377 to 1.161). Conclusion: Supervised exercise training improves lower-limb cutaneous microvascular reactivity in adults with venous leg ulceration. Keywords Randomized controlled trial; Exercise; Ulceration; Vascular function; Laser Doppler fluxmetry; Iontophoresi

    Matrix metalloproteinases in a sea urchin ligament with adaptable mechanical properties

    Get PDF
    Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs) of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states ("standard", "compliant" and "stiff") was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the CDLs, in the light of which we provide an updated hypothesis for the regulatory mechanism controlling MCT mutability

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    Relationship of clinical and pathologic nodal staging in locally advanced breast cancer: current controversies in daily practice?

    No full text
    Systemic neo-adjuvant therapy plays a primary role in the management of locally advanced breast cancer. Without having any negative effect in overall survival, induction chemotherapy potentially assures a surgery approach in unresectable disease or a conservative treatment in technically resectable disease and acts on a well-vascularized tumor bed, without the modifications induced by surgery. A specific issue has a central function in the neo-adjuvant setting: lymph nodes status. It still represents one of the strongest predictors of long-term prognosis in breast cancer. The discussion of regional radiation therapy should be a matter of debate, especially in a pathological complete response. Currently, the indication for radiotherapy is based on the clinical stage before the surgery, even for the irradiation of the loco-regional lymph nodes. Regardless of pathological down-staging, radiation therapy is accepted as standard adjuvant treatment in locally advanced breast cancer
    corecore