186 research outputs found

    ‘You get some very archaic ideas of what teaching is…’: Primary school teachers’ perceptions of the barriers to physically active lessons

    Get PDF
    Physically active lessons present a key paradigm shift in educational practice. However, little is known about the barriers to implementing physically active lessons. To address this, 31 practising primary teachers (23=female) from nine primary schools across West Yorkshire, England, were engaged in focus group interviews. Drawing on the socio-ecological model, findings revealed that barriers influencing the implementation of physically active lessons are multifaceted. Teacher’s confidence and competence, concerns over classroom space, preparation time and resources, coupled with the wider school culture that is influenced by governors and parents, reinforce a didactic approach and act as barriers to physically active lessons

    The Plasmodium falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to sexual differentiation

    Get PDF
    <b>Background</b> Malaria parasites undergo, in the vertebrate host, a developmental switch from asexual replication to sexual differentiation leading to the formation of gametocytes, the only form able to survive in the mosquito vector. Regulation of the onset of the sexual phase remains largely unknown and represents an important gap in the understanding of the parasite's complex biology. <b>Methods:</b> The expression and function of the Nima-related kinase Pfnek-4 during the early sexual development of the human malaria parasite Plasmodium falciparum were investigated, using three types of transgenic Plasmodium falciparum 3D7 lines: (i) episomally expressing a Pfnek-4-GFP fusion protein under the control of its cognate pfnek-4 promoter; (ii) episomally expressing negative or positive selectable markers, yeast cytosine deaminase-uridyl phosphoribosyl transferase, or human dihydrofolate reductase, under the control of the pfnek-4 promoter; and (iii) lacking a functional pfnek-4 gene. Parasite transfectants were analysed by fluorescence microscopy and flow cytometry. In vitro growth rate and gametocyte formation were determined by Giemsa-stained blood smears. <b>Results:</b> The Pfnek-4-GFP protein was found to be expressed in stage II to V gametocytes and, unexpectedly, in a subset of asexual-stage parasites undergoing schizogony. Culture conditions stimulating gametocyte formation resulted in significant increase of this schizont subpopulation. Moreover, sorted asexual parasites expressing the Pfnek-4-GFP protein displayed elevated gametocyte formation when returned to in vitro culture in presence of fresh red blood cells, when compared to GFP- parasites from the same initial population. Negative selection of asexual parasites expressing pfnek-4 showed a marginal reduction in growth rate, whereas positive selection caused a marked reduction in parasitaemia, but was not sufficient to completely abolish proliferation. Pfnek-4- clones are not affected in their asexual growth and produced normal numbers of stage V gametocytes. <b>Conclusions:</b> The results indicate that Pfnek-4 is not strictly gametocyte-specific, and is expressed in a small subset of asexual parasites displaying high rate conversion to sexual development. Pfnek-4 is not required for erythrocytic schizogony and gametocytogenesis. This is the first study to report the use of a molecular marker for the sorting of sexually-committed schizont stage P. falciparum parasites, which opens the way to molecular characterization of this pre-differentiated subpopulation

    Locating the place and meaning of physical activity in the lives of young people from low-income, lone-parent families

    Get PDF
    Background: In the United Kingdom (UK), it is predicted that economic cuts and a subsequent increase in child poverty will affect those already on the lowest incomes and, in particular, those living in lone-parent families. As a result, the informal pedagogic encounters within the family that contribute to the development of physical activity-related values, beliefs and dispositions from a very early age will be affected. Therefore, it is vital that we gain an understanding of the place and meaning of physical activity in the lives of young people, as well as the informal pedagogic practices and the socio-cultural forces that influence individual agency. Purpose: Based on Bourdieu's key concepts, this paper explores the interplay of structural conditions and personal agency with regard to physical activity in the lives of young people from low-income, lone-parent families. Methods: This study reports on the voices of 24 participants (aged 11–14) from low-income, lone-parent families in the West Midlands, UK. These participants were engaged in paired, semi-structured interviews to explore issues of personal agency by listening to how they reported on their present lives, past experiences and future possibilities with regard to physical activity. All corresponding interview data were analysed using analytical induction. Findings: This paper suggests that young people exhibited diminished desires to engage in activity due to structural constraints of time, parents' work commitments and a lack of transport that resulted in engagement in sedentary alternatives. Informal pedagogic practices within these families were restricted due to the associated structural conditions of living in a lone-parent family. As such, young people's choice to not seek out physical activities when at home reflected a ‘taste for necessity’ resulting from a lack of cultural and economic capital, placing restrictions on physical activity opportunities that stemmed from their family doxa. Conclusions: To succeed in fostering dispositions and opportunities to participate in physical activity, we must engage with young people from low-income, lone-parent families from an early age. Certainly though, further consideration of the informal pedagogic practices within, and the demands on, lone-parent families is required when designing any intervention or policy that seeks to enhance their current circumstances and provide opportunities for engagement in a variety of contexts

    Phylogenetic Analysis of the Neks Reveals Early Diversification of Ciliary-Cell Cycle Kinases

    Get PDF
    NIMA-related kinases (Neks) have been studied in diverse eukaryotes, including the fungus Aspergillus and the ciliate Tetrahymena. In the former, a single Nek plays an essential role in cell cycle regulation; in the latter, which has more than 30 Neks in its genome, multiple Neks regulate ciliary length. Mammalian genomes encode an intermediate number of Neks, several of which are reported to play roles in cell cycle regulation and/or localize to centrosomes. Previously, we reported that organisms with cilia typically have more Neks than organisms without cilia, but were unable to establish the evolutionary history of the gene family

    The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes

    Get PDF
    The relationship between late normal tissue radiation injury phenotypes in 167 breast cancer patients treated with radiotherapy and: (i) radiotherapy dose (boost); (ii) an early acute radiation reaction and (iii) genetic background was examined. Patients were genotyped at single nucleotide polymorphisms (SNPs) in eight candidate genes. An early acute reaction to radiation and/or the inheritance of the transforming growth factor-β1 (TGFβ1 −509T) SNP contributed to the risk of fibrosis. In contrast, an additional 15 Gy electron boost and/or the inheritance of X-ray repair cross-complementing 1 (XRCC1) (R399Q) SNP contributed to the risk of telangiectasia. Although fibrosis, telangiectasia and atrophy, all contribute to late radiation injury, the data suggest that they have distinct underlying genetic and radiobiological causes. Fibrosis risk is associated with an inflammatory response (an acute reaction and/or TGFβ1), whereas telangiectasia is associated with vascular endothelial cell damage (boost and/or XRCC1). Atrophy is associated with an acute response, but the genetic predisposing factors that determine the risk of an acute response or atrophy have yet to be identified. A combined analysis of two UK breast cancer patient studies shows that 8% of patients are homozygous (TT) for the TGFβ1 (C-509T) variant allele and have a 15-fold increased risk of fibrosis following radiotherapy (95% confidence interval: 3.76–60.3; P=0.000003) compared with (CC) homozygotes

    The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7.

    Get PDF
    Castration-resistant (CR) prostate cancer (PCa) partly arises due to persistence of androgen receptor (AR) transcriptional activity in the absence of cognate ligand. An emerging mechanism underlying the CRPCa phenotype and predicting response to therapy is the expression of the constitutively-active AR-V7 splice variant generated by AR cryptic exon 3b inclusion. Here, we explore the role of the RNA-binding protein (RBP) Sam68 (encoded by KHDRBS1), which is over-expressed in clinical PCa, on AR-V7 expression and transcription function. Using a minigene reporter, we show that Sam68 controls expression of exon 3b resulting in an increase in endogenous AR-V7 mRNA and protein expression in RNA-binding-dependent manner. We identify a novel protein-protein interaction between Sam68 and AR-V7 mediated by a common domain shared with full-length AR, and observe these proteins in the cell nucleoplasm. Using a luciferase reporter, we demonstrate that Sam68 co-activates ligand-independent AR-V7 transcriptional activity in an RNA-binding-independent manner, and controls expression of the endogenous AR-V7-specific gene target UBE2C. Our data suggest that Sam68 has separable effects on the regulation of AR-V7 expression and transcriptional activity, through its RNA-binding capacity. Sam68 and other RBPs may control expression of AR-V7 and other splice variants as well as their downstream functions in CRPCa

    Failure to Detect the Novel Retrovirus XMRV in Chronic Fatigue Syndrome

    Get PDF
    BACKGROUND:In October 2009 it was reported that 68 of 101 patients with chronic fatigue syndrome (CFS) in the US were infected with a novel gamma retrovirus, xenotropic murine leukaemia virus-related virus (XMRV), a virus previously linked to prostate cancer. This finding, if confirmed, would have a profound effect on the understanding and treatment of an incapacitating disease affecting millions worldwide. We have investigated CFS sufferers in the UK to determine if they are carriers of XMRV. METHODOLOGY:Patients in our CFS cohort had undergone medical screening to exclude detectable organic illness and met the CDC criteria for CFS. DNA extracted from blood samples of 186 CFS patients were screened for XMRV provirus and for the closely related murine leukaemia virus by nested PCR using specific oligonucleotide primers. To control for the integrity of the DNA, the cellular beta-globin gene was amplified. Negative controls (water) and a positive control (XMRV infectious molecular clone DNA) were included. While the beta-globin gene was amplified in all 186 samples, neither XMRV nor MLV sequences were detected. CONCLUSION:XMRV or MLV sequences were not amplified from DNA originating from CFS patients in the UK. Although we found no evidence that XMRV is associated with CFS in the UK, this may be a result of population differences between North America and Europe regarding the general prevalence of XMRV infection, and might also explain the fact that two US groups found XMRV in prostate cancer tissue, while two European studies did not

    IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    Get PDF
    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division

    Disulphide Bridges of Phospholipase C of Chlamydomonas reinhardtii Modulates Lipid Interaction and Dimer Stability

    Get PDF
    BACKGROUND: Phospholipase C (PLC) is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC) specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS: We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC) can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s) in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE: This study helps in establishing the role of CrPLC (or similar proteins) in the quaternary structure of the molecule its affinities during lipid interactions
    corecore