1,710 research outputs found

    Comparative Analysis of a Transition Region Bright Point with a Blinker and Coronal Bright Point Using Multiple EIS Emission Lines

    Get PDF
    Since their discovery twenty year ago, transition region bright points (TRBPs) have never been observed spectroscopically. Bright point properties have not been compared with similar transition region and coronal structures. In this work we have investigated three transient quiet Sun brightenings including a TRBP, a coronal BP (CBP) and a blinker. We use time-series observations of the extreme ultraviolet emission lines of a wide range of temperature T (log T = 5.3 - 6.4) from the EUV imaging spectrometer (EIS) onboard the Hinode satellite. We present the EIS temperature maps and Doppler maps, which are compared with magnetograms from the Michelson Doppler Imager (MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker are <,25 km s1^{-1}, which is typical of transient TR phenomena. The Dopper velocities of the CBP were found to be < 20 km s^{-1} with exception of those measured at log T = 6.2 where a distinct bi-directional jet is observed. From an EM loci analysis we find evidence of single and double isothermal components in the TRBP and CBP, respectively. TRBP and CBP loci curves are characterized by broad distributions suggesting the existence of unresolved structure. By comparing and contrasting the physical characteristics of the events we find the BP phenomena are an indication of multi-scaled self similarity, given similarities in both their underlying magnetic field configuration and evolution in relation to EUV flux changes. In contrast, the blinker phenomena and the TRBP are sufficiently dissimilar in their observed properties as to constitute different event classes. Our work indicates that the measurement of similar characteristics across multiple event types holds class-predictive power, and is a significant step towards automated solar atmospheric multi-class classification of unresolved transient EUV sources.Comment: 38 pages, 16 figure

    The spectral weight of the Hubbard model through cluster perturbation theory

    Full text link
    We calculate the spectral weight of the one- and two-dimensional Hubbard models, by performing exact diagonalizations of finite clusters and treating inter-cluster hopping with perturbation theory. Even with relatively modest clusters (e.g. 12 sites), the spectra thus obtained give an accurate description of the exact results. Thus, spin-charge separation (i.e. an extended spectral weight bounded by singularities) is clearly recognized in the one-dimensional Hubbard model, and so is extended spectral weight in the two-dimensional Hubbard model.Comment: 4 pages, 5 figure

    Orchestrating Game Generation

    Get PDF
    The design process is often characterized by and realized through the iterative steps of evaluation and refinement. When the process is based on a single creative domain such as visual art or audio production, designers primarily take inspiration from work within their domain and refine it based on their own intuitions or feedback from an audience of experts from within the same domain. What happens, however, when the creative process involves more than one creative domain such as in a digital game? How should the different domains influence each other so that the final outcome achieves a harmonized and fruitful communication across domains? How can a computational process orchestrate the various computational creators of the corresponding domains so that the final game has the desired functional and aesthetic characteristics? To address these questions, this article identifies game facet orchestration as the central challenge for AI-based game generation, discusses its dimensions and reviews research in automated game generation that has aimed to tackle it. In particular, we identify the different creative facets of games, we propose how orchestration can be facilitated in a top-down or bottom-up fashion, we review indicative preliminary examples of orchestration, and we conclude by discussing the open questions and challenges ahead

    Quasiparticle Dispersion of the 2D Hubbard Model: From an Insulator to a Metal

    Full text link
    On the basis of Quantum-Monte-Carlo results the evolution of the spectral weight A(k,ω)A(\vec k, \omega) of the two-dimensional Hubbard model is studied from insulating to metallic behavior. As observed in recent photoemission experiments for cuprates, the electronic excitations display essentially doping-independent features: a quasiparticle-like dispersive narrow band of width of the order of the exchange interaction JJ and a broad valence- and conduction-band background. The continuous evolution is traced back to one and the same many-body origin: the doping-dependent antiferromagnetic spin-spin correlation.Comment: 11 pages, REVtex, 4 figures (in uuencoded postscript format

    Anisotropy on the Fermi Surface of the Two-Dimensional Hubbard Model

    Get PDF
    We investigate anisotropic charge fluctuations in the two-dimensional Hubbard model at half filling. By the quantum Monte Carlo method, we calculate a momentum-resolved charge compressibility κ(k)=d<n(k)>/dμ\kappa (\bm{k}) = {d < n(\bm{k}) >}/{d \mu}, which shows effects of an infinitesimal doping. At the temperature Tt2/UT \sim {t^2}/{U}, κ(k)\kappa (\bm{k}) shows peak structure at the (±π/2,±π/2)(\pm \pi/2,\pm \pi/2) points along the kx+ky=π|k_x| + |k_y| = \pi line. A similar peak structure is reproduced in the mean-filed calculation for the d-wave pairing state or the staggered flux state.Comment: 5 pages, 3 figures, figures and presentation are modifie

    On Doppler tracking in cosmological spacetimes

    Get PDF
    We give a rigorous derivation of the general-relativistic formula for the two-way Doppler tracking of a spacecraft in Friedmann-Lemaitre-Robertson-Walker and in McVittie spacetimes. The leading order corrections of the so-determined acceleration to the Newtonian acceleration are due to special-relativistic effects and cosmological expansion. The latter, although linear in the Hubble constant, is negligible in typical applications within the Solar System.Comment: 10 pages, 1 figure. Journal versio

    From local to nonlocal Fermi liquid in doped antiferromagnets

    Full text link
    The variation of single-particle spectral functions with doping is studied numerically within the t-J model. It is shown that corresponding self energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations.Comment: 4 pages, 3 Postscript figures, revtex, submitted to Phys.Rev.Let

    Rail accessibility in Germany: Changing regional disparities between 1990 and 2020

    Get PDF
    Transport accessibility is an important location factor for households and firms. In the last few decades, technological and social developments have contributed to a reinvigorated role of passenger transport. However, rail accessibility is unevenly distributed in space. The introduction of high-speed rail has furthermore promoted a polarisation of accessibility between metropolises and peripheral areas in some European countries. In this article we analyse the development of rail accessibility at the regional level in Germany between 1990 and 2020 for 266 functional city-regions. Our results show two different facets: The number of regions that are directly connected to one another has decreased, but at the same time the spatial disparities of accessibility have decreased, albeit to a small extent. This development was strongest in East Germany after German reunification and thus largely a consequence of the renovation of the conventional rail infrastructure, not high-speed rail. Nevertheless, it can be concluded that the introduction of high-speed traffic in Germany did not lead to an increase in accessibility disparities. Instead, the accessibility effects of high-speed rail in Germany seem to break the traditional dichotomy between core and periphery.Verkehrliche Erreichbarkeit stellt einen wichtigen Standortfaktor für Haushalte und Unternehmen dar. In den letzten Jahrzehnten haben technologische und soziale Entwicklungen zu einer neuen Attraktivität des Schienenpersonenverkehrs beigetragen. Die Erreichbarkeit über den Schienenverkehr fällt jedoch räumlich sehr unterschiedlich aus. Die Einführung des Hochgeschwindigkeitsverkehrs hat zudem in einigen europäischen Ländern eine Polarisierung der Erreichbarkeit zwischen Metropolen und peripheren Räumen befördert. In diesem Beitrag analysieren wir die Entwicklung der Bahnerreichbarkeit auf regionaler Ebene in Deutschland zwischen 1990 und 2020 für 266 funktionale Stadtregionen. Unsere Ergebnisse zeigen zwei unterschiedliche Facetten: Die Zahl der direkt miteinander verbundenen Regionen hat sich verringert, aber zugleich zeigt sich für die Erreichbarkeit der Bevölkerung eine Abschwächung der räumlichen Disparitäten, wenn auch in geringem Maße. Diese Entwicklung war in Ostdeutschland nach der deutschen Wiedervereinigung am stärksten und damit weitgehend eine Folge der Sanierung der konventionellen Schieneninfrastruktur, nicht des Hochgeschwindigkeitsverkehrs. Dennoch kann der Schluss gezogen werden, dass seine Einführung in Deutschland nicht zur Erhöhung von Erreichbarkeitsdisparitäten geführt hat. Stattdessen scheinen die Erreichbarkeitswirkungen des Hochgeschwindigkeitsverkehrs in Deutschland die traditionelle Dichotomie zwischen Kern und Peripherie zu durchbrechen

    Operator projection method applied to the single-particle Green's function in the Hubbard model

    Full text link
    A new non-perturbative framework for many-body correlated systems is formulated by extending the operator projection method (OPM). This method offers a systematic expansion which enables us to project into the low-energy structure after extracting the higher-energy hierarchy. This method also opens a way to systematically take into account the effects of collective excitations. The Mott-Hubbard metal-insulator transition in the Hubbard model is studied by means of this projection beyond the second order by taking into account magnetic and charge fluctuations in the presence of the high-energy Mott-Hubbard structure. At half filling, the Mott-Hubbard gap is correctly eproduced between the separated two bands. Near half filling, a strongly renormalized low-energy single-particle excitations coexisting with the Mott-Hubbard bands are shown to appear. Signifcance of momentum-dependent self-energy in the results is stressed.Comment: 6 pages, final version to appear in J. Phys. Soc. Jp

    Evaluation of a Simplified Measurement for Low Glomerular Filtration Rates With lndium-111 DTPA

    Get PDF
    A rapid new method for measuring glomerular filtration rates using 111In diethylenetriamine pentaacetic acid (111In- DTPA) was evaluated with 39 patients who showed marked impairment of renal function (creatinine clearance less than 20 ml/min). A simple, single compartment system was assumed. For comparison, parallel inulin and creatinine clearances were performed. High linear correlations (r = 0.96-0.97) were demonstrated when 111In- DTPA clearances were compared with the standard nonisotopic tests. Initial data indicate that reliable isotopic clearance values could be obtained for low clearances by withdrawing only two blood samples for assay at 6 and 48 hours after isotope injection (without urine assay)
    corecore