72 research outputs found

    Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia and the East Mediterranean

    Get PDF
    We present a spatiotemporal picture of human genetic diversity in Anatolia, Iran, Levant, South Caucasus, and the Aegean, a broad region that experienced the earliest Neolithic transition and the emergence of complex hierarchical societies. Combining 35 new ancient shotgun genomes with 382 ancient and 23 present-day published genomes, we found that genetic diversity within each region steadily increased through the Holocene. We further observed that the inferred sources of gene flow shifted in time. In the first half of the Holocene, Southwest Asian and the East Mediterranean populations homogenized among themselves. Starting with the Bronze Age, however, regional populations diverged from each other, most likely driven by gene flow from external sources, which we term “the expanding mobility model.” Interestingly, this increase in inter-regional divergence can be captured by outgroup-f3_3-based genetic distances, but not by the commonly used FST_{ST} statistic, due to the sensitivity of FST_{ST}, but not outgroup-f3_3, to within-population diversity. Finally, we report a temporal trend of increasing male bias in admixture events through the Holocene

    Ergonomic design in ancient Greece

    No full text

    Phylogenetic relationships and biogeography of Podarcis species from the Balkan Peninsula, by bayesian and maximum likelihood analyses of mitochondrial DNA sequences

    No full text
    Wall lizards of the genus Podarcis (Sauria, Lacertidae) comprise 17 currently recognized species in southern Europe, where they are the predominant nonavian reptile group. The taxonomy of Podarcis is complex and unstable. Based on DNA sequence data, the species of Podarcis falls into four main groups that have substantial geographic coherence (Western island group, southwestern group, Italian group, and Balkan Peninsula group). The Balkan Peninsula species are divided into two subgroups: the subgroup of P. taurica (P. taurica, P. milensis, P. gaigeae, and perhaps P. melisellensis), and the subgroup of P. erhardii (P. erhardii and P. peloponnesiaca). In the present study, the question of phylogenetic relationships among the species of Podarcis encountered in the Balkan Peninsula was addressed using partial mtDNA sequences for cytochrome b (cyt b) and 16S rRNA (16S). The data support the monophyly of Podarcis and suggest that there are three phylogenetic clades: the clade A (P. taurica, P. gaigeae, P. milensis, and P. melisellensis); the clade B (P. erhardii and P. peloponnesiaca), and the clade C (P. muralis and P. sicula). By examining intraspecific relationships it was found that extant populations of P. erhardii are paraphyletic. Furthermore, subspecies previously defined on the basis of morphological characteristics do not correspond to different molecular phylogenetic clades, suggesting that their status should be reconsidered. The distinct geographic distribution of the major clades of the phylogenetic tree and its topology suggest a spatial and temporal sequence of phylogenetic separations that coincide with some major paleogeographic separations during the geological history of the Aegean Sea. The results stress the need for a reconsideration of the evolutionary history of Balkan Podarcis species and help overcome difficulties that classical taxonomy has encountered at both the species and subspecies level. © 2005 Elsevier Inc. All rights reserved

    Tail shedding in island lizards [lacertidae, reptilia]: Decline of antipredator defenses in relaxed predation environments

    No full text
    The ability of an animal to shed its tail is a widespread antipredator strategy among lizards. The degree of expression of this defense is expected to be shaped by prevailing environmental conditions including local predation pressure. We test these hypotheses by comparing several aspects of caudal autotomy in 15 Mediterranean lizard taxa existing across a swath of mainland and island localities that differ in the number and identity of predator species present. Autotomic ease varied substantially among the study populations, in a pattern that is best explained by the presence of vipers. Neither insularity nor the presence of other types of predators explain the observed autotomy rates. Final concentration of accumulated tail muscle lactate and duration of movement of a shed tail, two traits that were previously thought to relate to predation pressure, are in general not shaped by either predator diversity or insularity. Under conditions of relaxed predation selection, an uncoupling of different aspects of caudal autotomy exists, with some elements (ease of autotomy) declining faster than others (duration of movement, lactate concentration). We compared rates of shed tails in the field against rates of laboratory autotomies conducted under standardized conditions and found very high correlation values (r > 0.96). This suggests that field autotomy rates, rather than being a metric of predatory attacks, merely reflect the innate predisposition of a taxon to shed its tail. © 2009 The Society for the Study of Evolution
    corecore