8,886 research outputs found

    Nonlinear c-axis transport in Bi_2Sr_2CaCu_2O_(8+d) from two-barrier tunneling

    Full text link
    Motivated by the peculiar features observed through intrinsic tunneling spectroscopy of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} mesas in the normal state, we have extended the normal state two-barrier model for the c-axis transport [M. Giura et al., Phys. Rev. B {\bf 68}, 134505 (2003)] to the analysis of dI/dVdI/dV curves. We have found that the purely normal-state model reproduces all the following experimental features: (a) the parabolic VV-dependence of dI/dVdI/dV in the high-TT region (above the conventional pseudogap temperature), (b) the emergence and the nearly voltage-independent position of the "humps" from this parabolic behavior lowering the temperature, and (c) the crossing of the absolute dI/dVdI/dV curves at a characteristic voltage V×V^\times. Our findings indicate that conventional tunneling can be at the origin of most of the uncommon features of the c axis transport in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We have compared our calculations to experimental data taken in severely underdoped and slightly underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} small mesas. We have found good agreement between the data and the calculations, without any shift of the calculated dI/dV on the vertical scale. In particular, in the normal state (above TT^\ast) simple tunneling reproduces the experimental dI/dV quantitatively. Below TT^\ast quantitative discrepancies are limited to a simple rescaling of the voltage in the theoretical curves by a factor \sim2. The need for such modifications remains an open question, that might be connected to a change of the charge of a fraction of the carriers across the pseudogap opening.Comment: 7 pages, 5 figure

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    Matrix bandwidth and profile reduction

    Get PDF
    This program, REDUCE, reduces the bandwidth and profile of sparse symmetric matrices, using row and corresponding column permutations. It is a realization of the algorithm described by the authors elsewhere. It was extensively tested and compared with several other programs and was found to be considerably faster than the others, superior for bandwidth reduction and as satisfactory as any other for profile reduction

    Magnetic susceptibility of ultra-small superconductor grains

    Full text link
    For assemblies of superconductor nanograins, the magnetic response is analyzed as a function of both temperature and magnetic field. In order to describe the interaction energy of electron pairs for a huge number of many-particle states, involved in calculations, we develop a simple approximation, based on the Richardson solution for the reduced BCS Hamiltonian and applicable over a wide range of the grain sizes and interaction strengths at arbitrary distributions of single-electron energy levels in a grain. Our study is focused upon ultra-small grains, where both the mean value of the nearest-neighbor spacing of single-electron energy levels in a grain and variations of this spacing from grain to grain significantly exceed the superconducting gap in bulk samples of the same material. For these ultra-small superconductor grains, the overall profiles of the magnetic susceptibility as a function of magnetic field and temperature are demonstrated to be qualitatively different from those for normal grains. We show that the analyzed signatures of pairing correlations are sufficiently stable with respect to variations of the average value of the grain size and its dispersion over an assembly of nanograins. The presence of these signatures does not depend on a particular choice of statistics, obeyed by single-electron energy levels in grains.Comment: 40 pages, 12 figures, submitted to Phys. Rev. B, E-mail addresses: [email protected], [email protected], [email protected]

    Effects of social disruption in elephants persist decades after culling.

    Get PDF
    BACKGROUND Multi-level fission-fusion societies, characteristic of a number of large brained mammal species including some primates, cetaceans and elephants, are among the most complex and cognitively demanding animal social systems. Many free-ranging populations of these highly social mammals already face severe human disturbance, which is set to accelerate with projected anthropogenic environmental change. Despite this, our understanding of how such disruption affects core aspects of social functioning is still very limited. RESULTS We now use novel playback experiments to assess decision-making abilities integral to operating successfully within complex societies, and provide the first systematic evidence that fundamental social skills may be significantly impaired by anthropogenic disruption. African elephants (Loxodonta africana) that had experienced separation from family members and translocation during culling operations decades previously performed poorly on systematic tests of their social knowledge, failing to distinguish between callers on the basis of social familiarity. Moreover, elephants from the disrupted population showed no evidence of discriminating between callers when age-related cues simulated individuals on an increasing scale of social dominance, in sharp contrast to the undisturbed population where this core social ability was well developed. CONCLUSIONS Key decision-making abilities that are fundamental to living in complex societies could be significantly altered in the long-term through exposure to severely disruptive events (e.g. culling and translocation). There is an assumption that wildlife responds to increasing pressure from human societies only in terms of demography, however our study demonstrates that the effects may be considerably more pervasive. These findings highlight the potential long-term negative consequences of acute social disruption in cognitively advanced species that live in close-knit kin-based societies, and alter our perspective on the health and functioning of populations that have been subjected to anthropogenic disturbance

    Patterning of ultrathin YBCO nanowires using a new focused-ion-beam process

    Full text link
    Manufacturing superconducting circuits out of ultrathin films is a challenging task when it comes to patterning complex compounds, which are likely to be deteriorated by the patterning process. With the purpose of developing high-Tc_c superconducting photon detectors, we designed a novel route to pattern ultrathin YBCO films down to the nanometric scale. We believe that our method, based on a specific use of a focused-ion beam, consists in locally implanting Ga^{3+} ions and/or defects instead of etching the film. This protocol could be of interest to engineer high-Tc_c superconducting devices (SQUIDS, SIS/SIN junctions and Josephson junctions), as well as to treat other sensitive compounds.Comment: 13 pages, 7 figure

    Josephson junction array type I-V characteristics of quench-condensed ultra thin films of Bi

    Full text link
    In this communication we report studies of d.c current-voltage (I-V) characteristics of ultra thin films of Bi, quench condensed on single crystal sapphire substrates at T = 15K. The hysteretic I-V characteristics are explained using a resistively and capacitively shunted junction (RCSJ) model of Josephson junction arrays. The Josephson coupling energy(EJE_J) and the charging energy(EcE_c) are calculated for different thickness(dd) values. A low resistance state is found in the low current regime below the critical current, IcI_c. This resistance R0R_0 is found to have a minimum at a particular thickness (dcd_c) value. Reflection High Energy Electron Diffraction (RHEED) studies are done on these films. A distinct appearance of a diffuse ring near dcd_c is observed in the diffraction images, consistent with the recent STM studies(Ekinci and Valles, PRL {\bf 82}(1999) 1518). These films show an irreversible annealing when temperature is increased. The annealing temperature (TaT_a) also has a maximum at the same thickness. Althoguh the Rs_s vs T of quench condensed Bi films suggest that the films are uniform, our results indicate that even in thick films, the order parameter is not fully developed over the complete area of the film. These results are discussed qualitatively.Comment: 6 pages, 6 figure

    Stress singularities and the formation of birefringent strands in stagnation flows of dilute polymer solutions

    Full text link
    We consider stagnation point flow away from a wall for creeping flow of dilute polymer solutions. For a simplified flow geometry, we explicitly show that a narrow region of strong polymer extension (a birefringent strand) forms downstream of the stagnation point in the UCM model and extensions, like the FENE-P model. These strands are associated with the existence of an essential singularity in the stresses, which is induced by the fact that the stagnation point makes the convective term in the constitutive equation into a singular point. We argue that the mechanism is quite general, so that all flows that have a separatrix going away from the stagnation point exhibit some singular behaviour. These findings are the counterpart for wall stagnation points of the recently discovered singular behaviour in purely elongational flows: the underlying mechanism is the same while the different nature of the singular stress behaviour reflects the different form of the velocity expansion close to the stagnation point.Comment: 15 pages, 6 figure
    corecore