8,886 research outputs found
Nonlinear c-axis transport in Bi_2Sr_2CaCu_2O_(8+d) from two-barrier tunneling
Motivated by the peculiar features observed through intrinsic tunneling
spectroscopy of BiSrCaCuO mesas in the normal state,
we have extended the normal state two-barrier model for the c-axis transport
[M. Giura et al., Phys. Rev. B {\bf 68}, 134505 (2003)] to the analysis of
curves. We have found that the purely normal-state model reproduces all
the following experimental features: (a) the parabolic -dependence of
in the high- region (above the conventional pseudogap temperature),
(b) the emergence and the nearly voltage-independent position of the "humps"
from this parabolic behavior lowering the temperature, and (c) the crossing of
the absolute curves at a characteristic voltage . Our
findings indicate that conventional tunneling can be at the origin of most of
the uncommon features of the c axis transport in
BiSrCaCuO. We have compared our calculations to
experimental data taken in severely underdoped and slightly underdoped
BiSrCaCuO small mesas. We have found good agreement
between the data and the calculations, without any shift of the calculated
dI/dV on the vertical scale. In particular, in the normal state (above
) simple tunneling reproduces the experimental dI/dV quantitatively.
Below quantitative discrepancies are limited to a simple rescaling of
the voltage in the theoretical curves by a factor 2. The need for such
modifications remains an open question, that might be connected to a change of
the charge of a fraction of the carriers across the pseudogap opening.Comment: 7 pages, 5 figure
Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation
We describe an experiment aimed at measuring the spin dynamics of the Fe8
single-molecule magnet in the presence of pulsed microwave radiation. In
earlier work, heating was observed after a 0.2-ms pulse of intense radiation,
indicating that the spin system and the lattice were out of thermal equilibrium
at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the
current work, an inductive pick-up loop is used to probe the photon-induced
magnetization dynamics between only two levels of the spin system at much
shorter time scales (from ns to us). The relaxation time for the magnetization,
induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the
Journal of Applied Physics as MMM'05 conference proceeding
Matrix bandwidth and profile reduction
This program, REDUCE, reduces the bandwidth and profile of sparse symmetric matrices, using row and corresponding column permutations. It is a realization of the algorithm described by the authors elsewhere. It was extensively tested and compared with several other programs and was found to be considerably faster than the others, superior for bandwidth reduction and as satisfactory as any other for profile reduction
Magnetic susceptibility of ultra-small superconductor grains
For assemblies of superconductor nanograins, the magnetic response is
analyzed as a function of both temperature and magnetic field. In order to
describe the interaction energy of electron pairs for a huge number of
many-particle states, involved in calculations, we develop a simple
approximation, based on the Richardson solution for the reduced BCS Hamiltonian
and applicable over a wide range of the grain sizes and interaction strengths
at arbitrary distributions of single-electron energy levels in a grain. Our
study is focused upon ultra-small grains, where both the mean value of the
nearest-neighbor spacing of single-electron energy levels in a grain and
variations of this spacing from grain to grain significantly exceed the
superconducting gap in bulk samples of the same material. For these ultra-small
superconductor grains, the overall profiles of the magnetic susceptibility as a
function of magnetic field and temperature are demonstrated to be qualitatively
different from those for normal grains. We show that the analyzed signatures of
pairing correlations are sufficiently stable with respect to variations of the
average value of the grain size and its dispersion over an assembly of
nanograins. The presence of these signatures does not depend on a particular
choice of statistics, obeyed by single-electron energy levels in grains.Comment: 40 pages, 12 figures, submitted to Phys. Rev. B, E-mail addresses:
[email protected], [email protected], [email protected]
Effects of social disruption in elephants persist decades after culling.
BACKGROUND
Multi-level fission-fusion societies, characteristic of a number of large brained mammal species including some primates, cetaceans and elephants, are among the most complex and cognitively demanding animal social systems. Many free-ranging populations of these highly social mammals already face severe human disturbance, which is set to accelerate with projected anthropogenic environmental change. Despite this, our understanding of how such disruption affects core aspects of social functioning is still very limited.
RESULTS
We now use novel playback experiments to assess decision-making abilities integral to operating successfully within complex societies, and provide the first systematic evidence that fundamental social skills may be significantly impaired by anthropogenic disruption. African elephants (Loxodonta africana) that had experienced separation from family members and translocation during culling operations decades previously performed poorly on systematic tests of their social knowledge, failing to distinguish between callers on the basis of social familiarity. Moreover, elephants from the disrupted population showed no evidence of discriminating between callers when age-related cues simulated individuals on an increasing scale of social dominance, in sharp contrast to the undisturbed population where this core social ability was well developed.
CONCLUSIONS
Key decision-making abilities that are fundamental to living in complex societies could be significantly altered in the long-term through exposure to severely disruptive events (e.g. culling and translocation). There is an assumption that wildlife responds to increasing pressure from human societies only in terms of demography, however our study demonstrates that the effects may be considerably more pervasive. These findings highlight the potential long-term negative consequences of acute social disruption in cognitively advanced species that live in close-knit kin-based societies, and alter our perspective on the health and functioning of populations that have been subjected to anthropogenic disturbance
Good data, smart analysis, meaningful conclusions: Towards a gender analysis framework
Peer Revie
Patterning of ultrathin YBCO nanowires using a new focused-ion-beam process
Manufacturing superconducting circuits out of ultrathin films is a
challenging task when it comes to patterning complex compounds, which are
likely to be deteriorated by the patterning process. With the purpose of
developing high-T superconducting photon detectors, we designed a novel
route to pattern ultrathin YBCO films down to the nanometric scale. We believe
that our method, based on a specific use of a focused-ion beam, consists in
locally implanting Ga^{3+} ions and/or defects instead of etching the film.
This protocol could be of interest to engineer high-T superconducting
devices (SQUIDS, SIS/SIN junctions and Josephson junctions), as well as to
treat other sensitive compounds.Comment: 13 pages, 7 figure
Josephson junction array type I-V characteristics of quench-condensed ultra thin films of Bi
In this communication we report studies of d.c current-voltage (I-V)
characteristics of ultra thin films of Bi, quench condensed on single crystal
sapphire substrates at T = 15K. The hysteretic I-V characteristics are
explained using a resistively and capacitively shunted junction (RCSJ) model of
Josephson junction arrays. The Josephson coupling energy() and the
charging energy() are calculated for different thickness() values. A
low resistance state is found in the low current regime below the critical
current, . This resistance is found to have a minimum at a
particular thickness () value. Reflection High Energy Electron Diffraction
(RHEED) studies are done on these films. A distinct appearance of a diffuse
ring near is observed in the diffraction images, consistent with the
recent STM studies(Ekinci and Valles, PRL {\bf 82}(1999) 1518). These films
show an irreversible annealing when temperature is increased. The annealing
temperature () also has a maximum at the same thickness. Althoguh the
R vs T of quench condensed Bi films suggest that the films are uniform, our
results indicate that even in thick films, the order parameter is not fully
developed over the complete area of the film. These results are discussed
qualitatively.Comment: 6 pages, 6 figure
Stress singularities and the formation of birefringent strands in stagnation flows of dilute polymer solutions
We consider stagnation point flow away from a wall for creeping flow of
dilute polymer solutions. For a simplified flow geometry, we explicitly show
that a narrow region of strong polymer extension (a birefringent strand) forms
downstream of the stagnation point in the UCM model and extensions, like the
FENE-P model. These strands are associated with the existence of an essential
singularity in the stresses, which is induced by the fact that the stagnation
point makes the convective term in the constitutive equation into a singular
point. We argue that the mechanism is quite general, so that all flows that
have a separatrix going away from the stagnation point exhibit some singular
behaviour. These findings are the counterpart for wall stagnation points of the
recently discovered singular behaviour in purely elongational flows: the
underlying mechanism is the same while the different nature of the singular
stress behaviour reflects the different form of the velocity expansion close to
the stagnation point.Comment: 15 pages, 6 figure
- …
