79 research outputs found

    Evolution and overview of Linked USDL

    Get PDF
    For more than 10 years, research on service descriptions has mainly studied software-based services and provided languages such as WSDL, OWL-S, WSMO for SOAP, and hREST for REST. Nonetheless, recent developments from service management (e.g., ITIL and COBIT) and cloud computing (e.g. Software-as-a-Service) have brought new re- quirements to service descriptions languages: the need to also model business services and account for the multi-faceted nature of services. Business-orientation, co-creation, pricing, legal aspects, and security issues are all elements which must also be part of service descriptions. While ontologies such as e service and e value provided a first modeling attempt to capture a business perspective, concerns on how to contract services and the agreements entailed by a contract also need to be taken into account. This has for the most part been disregarded by the e family of ontologies. In this paper, we review the evolution and provide an overview of Linked USDL, a comprehensive language which provides a (multi-faceted) description to enable the commercialization of (business and technical) services over the web

    From Artifacts to Aggregations: Modeling Scientific Life Cycles on the Semantic Web

    Full text link
    In the process of scientific research, many information objects are generated, all of which may remain valuable indefinitely. However, artifacts such as instrument data and associated calibration information may have little value in isolation; their meaning is derived from their relationships to each other. Individual artifacts are best represented as components of a life cycle that is specific to a scientific research domain or project. Current cataloging practices do not describe objects at a sufficient level of granularity nor do they offer the globally persistent identifiers necessary to discover and manage scholarly products with World Wide Web standards. The Open Archives Initiative's Object Reuse and Exchange data model (OAI-ORE) meets these requirements. We demonstrate a conceptual implementation of OAI-ORE to represent the scientific life cycles of embedded networked sensor applications in seismology and environmental sciences. By establishing relationships between publications, data, and contextual research information, we illustrate how to obtain a richer and more realistic view of scientific practices. That view can facilitate new forms of scientific research and learning. Our analysis is framed by studies of scientific practices in a large, multi-disciplinary, multi-university science and engineering research center, the Center for Embedded Networked Sensing (CENS).Comment: 28 pages. To appear in the Journal of the American Society for Information Science and Technology (JASIST

    Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility

    Full text link
    We present a systematic study of the effect of crack blunting on subsequent crack propagation and dislocation emission. We show that the stress intensity factor required to propagate the crack is increased as the crack is blunted by up to thirteen atomic layers, but only by a relatively modest amount for a crack with a sharp 60^\circ corner. The effect of the blunting is far less than would be expected from a smoothly blunted crack; the sharp corners preserve the stress concentration, reducing the effect of the blunting. However, for some material parameters blunting changes the preferred deformation mode from brittle cleavage to dislocation emission. In such materials, the absorption of preexisting dislocations by the crack tip can cause the crack tip to be locally arrested, causing a significant increase in the microscopic toughness of the crack tip. Continuum plasticity models have shown that even a moderate increase in the microscopic toughness can lead to an increase in the macroscopic fracture toughness of the material by several orders of magnitude. We thus propose an atomic-scale mechanism at the crack tip, that ultimately may lead to a high fracture toughness in some materials where a sharp crack would seem to be able to propagate in a brittle manner. Results for blunt cracks loaded in mode II are also presented.Comment: 12 pages, REVTeX using epsfig.sty. 13 PostScript figures. Final version to appear in Phys. Rev. B. Main changes: Discussion slightly shortened, one figure remove

    The INDEPTH Data Repository

    No full text
    corecore