231 research outputs found

    Signaling Pathways Governing the Caspofungin Paradoxical Effect in Aspergillus fumigatus.

    Get PDF
    Aspergillus fumigatus is responsible for a wide range of diseases affecting several million people worldwide. Currently, a few families of antifungals are available to fight aspergillosis, and we are facing a worrisome increase in resistance to azoles, the drugs used for both first-line treatment and prophylaxis of invasive aspergillosis. In this context, some of the latest antifungals, i.e., echinocandins, have gained attention. Even though acquired resistance to echinocandins is yet uncommon in A. fumigatus clinical isolates, some strains exhibit another characteristic that relies on their capacity to grow at suprainhibitory echinocandin concentrations in vitro This intriguing phenomenon, especially observed with caspofungin and now referred to as the caspofungin paradoxical effect (CPE), relies on molecular mechanisms that were hitherto little understood. Here, we discuss the recent key findings of Valero and colleagues published in mBio (C. Valero, A. C. Colabardini, J. Chiaratto, L. Pardeshi, et al., mBio 11:e00816-20, 2020, https://doi.org/10.1128/mBio.00816-20) that will allow a better understanding of the complex regulatory pathway involved in governing the response of A. fumigatus to caspofungin

    Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold

    Get PDF
    The ubiquitous mold is increasingly recognized as an emerging pathogen, especially among patients with underlying disorders such as immunodeficiency or cystic fibrosis (CF). Indeed, it ranks the second among the filamentous fungi colonizing the respiratory tract of CF patients. However, our knowledge about virulence factors of this fungus is still limited. The role of iron-uptake systems may be critical for establishment of infections, notably in the iron-rich environment of the CF lung. Two main strategies are employed by fungi to efficiently acquire iron from their host or from their ecological niche: siderophore production and reductive iron assimilation (RIA) systems. The aim of this study was to assess the existence of orthologous genes involved in iron metabolism in the recently sequenced genome of . At first, a tBLASTn analysis using iron-related proteins as query revealed orthologs of almost all relevant loci in the genome. Whereas the genes putatively involved in RIA were randomly distributed, siderophore biosynthesis and transport genes were organized in two clusters, each containing a non-ribosomal peptide synthetase (NRPS) whose orthologs in have been described to catalyze hydroxamate siderophore synthesis. Nevertheless, comparative genomic analysis of siderophore-related clusters showed greater similarity between and phylogenetically close molds than with species. The expression level of these genes was then evaluated by exposing conidia to iron starvation and iron excess. The expression of several orthologs of genes involved in siderophore-based iron uptake or RIA was significantly induced during iron starvation, and conversely repressed in iron excess conditions. Altogether, these results indicate that possesses the genetic information required for efficient and competitive iron uptake. They also suggest an important role of the siderophore production system in iron uptake by

    Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii

    Get PDF
    The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species

    Enhanced direct oxidation of diclofenac (DCF) at a carbon paste electrode (CPE) modified with cellulose and its biodegradability by Scedosporium dehoogii

    Get PDF
    A novel carbon paste electrode modified with cellulose fibers and dedicated to diclofenac electroanalysis was prepared, optimized, and used for the determination of the kinetic parameters of DCF biodegradation by a filamentous fungus. The electrochemical response of the modified CPE was compared to that of the unmodified. This study conducted by cyclic voltammetry and linear sweep voltammetry allowed the optimization of the cellulose fibers modified CPE in terms of absence/presence of cellulose fibers, accumulation time (250 s), and initial potential (- 0.4 V/Ag/AgCl). Interestingly, in these conditions, the limit of detection observed through linear sweet voltammetry was found to be as low as 0.020 ”mol L-1. This electrode was then used to follow the degradation of DCF. Our results demonstrated that among species belonging to the Scedosporium genus, S. dehoogii displayed the best assets in our process in terms of growth temperature and ability to metabolize DCF. More precisely, DCF biodegradation using S. dehoogii in the process revealed a kinetic of order of 1, a kinetic constant k of 0.012 day-1 and a half time of 57.8 days for an initial concentration of DCF of 1.65 ± 0.05 mg L-1 and at a temperature of 25°C. This study constitutes a solid proof of concept for future developments of fungal wastewater treatments for bioremediation of DCF which is refractory to standard bacterial-based bioprocesses

    Promising pre-clinical validation of targeted radionuclide therapy using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment

    Full text link
    Targeted internal radionuclide therapy (TRT) would be an effective alternative to current therapies for dissemi- nated melanoma treatment. At our institution, a class of iodobenzamides has been developed as potent melanoma- seeking agents. This review described the preclinical vali- dations of a quinoxaline derivative molecule (ICF01012) as tracer for TRT application. It was selected for its high, specific and long-lasting uptake in tumour with rapid clear- ance from non-target organs providing suitable dosimetry parameters for TRT. Extended in vivo study of metabolic profiles confirmed durable tumoural concentration of the unchanged molecule form. Moreover melanin specificity of ICF01012 was determined by binding assay with syn- thetic melanin and in vivo by SIMS imaging. Then, we showed in vivo that [131I] ICF01012 treatment drastically inhibited growth of B16F0, B16Bl6 and M4Beu tumours whereas [131I] NaI or unlabelled ICF01012 treatment was without significant effect. Histological analysis showed that residual tumour cells exhibit a significant loss of aggres- siveness after treatment. This anti-tumoural effect was associated with a lengthening of the treated-mice survival time and an inhibition of lung dissemination for B16Bl6 model. Results presented here support the concept of TRT using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment.<br /

    The injury epidemiology of cyclists based on a road trauma registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bicycle use has increased in some of France's major cities, mainly as a means of transport. Bicycle crashes need to be studied, preferably by type of cycling. Here we conduct a descriptive analysis.</p> <p>Method</p> <p>A road trauma registry has been in use in France since 1996, in a large county around Lyon (the RhĂŽne, population 1.6 million). It covers outpatients, inpatients and fatalities. All injuries are coded using the Abbreviated Injury Scale (AIS). Proxies were used to identify three types of cycling: learning = children (0-10 years old); sports cycling = teenagers and adults injured outside towns; cycling as means of transport = teenagers and adults injured in towns. The study is based on 13,684 cyclist casualties (1996-2008).</p> <p>Results</p> <p>The percentage of cyclists injured in a collision with a motor vehicle was 8% among children, 17% among teenagers and adults injured outside towns, and 31% among those injured in towns. The percentage of serious casualties (MAIS 3+) was 4.5% among children, 10.9% among adults injured outside towns and 7.2% among those injured in towns. Collisions with motor-vehicles lead to more internal injuries than bicycle-only crashes.</p> <p>Conclusion</p> <p>The description indicates that cyclist type is associated with different crash and injury patterns. In particular, cyclists injured in towns (where cycling is increasing) are generally less severely injured than those injured outside towns for both types of crash (bicycle-only crashes and collisions with a motor vehicle). This is probably due to lower speeds in towns, for both cyclists and motor vehicles.</p

    Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved potentiality of SIMS imaging in life sciences

    Get PDF
    BACKGROUND: Analytical imaging by secondary ion mass spectrometry (SIMS) provides images representative of the distribution of a specific ion within a sample surface. For the last fifteen years, concerted collaborative research to design a new ion microprobe with high technical standards in both mass and lateral resolution as well as in sensitivity has led to the CAMECA NanoSims 50, recently introduced onto the market. This instrument has decisive capabilities, which allow biological applications of SIMS microscopy at a level previously inaccessible. Its potential is illustrated here by the demonstration of the specific affinity of a melanoma marker for melanin. This finding is of great importance for the diagnosis and/or treatment of malignant melanoma, a tumour whose worldwide incidence is continuously growing. METHODS: The characteristics of the instrument are briefly described and an example of application is given. This example deals with the intracellular localization of an iodo-benzamide used as a diagnostic tool for the scintigraphic detection of melanic cells (e.g. metastasis of malignant melanoma). B16 melanoma cells were injected intravenously to C(57)BL(6)/J(1)/co mice. Multiple B16 melanoma colonies developed in the lungs of treated animals within three weeks. Iodobenzamide was injected intravenously in tumour bearing mice six hours before sacrifice. Small pieces of lung were prepared for SIMS analysis. RESULTS: Mouse lung B16 melanoma colonies were observed with high lateral resolution. Cyanide ions gave "histological" images of the cell, representative of the distribution of C and N containing molecules (e.g. proteins, nucleic acids, melanin, etc.) while phosphorus ions are mainly produced by nucleic acids. Iodine was detected only in melanosomes, confirming the specific affinity of the drug for melanin. No drug was found in normal lung tissue. CONCLUSION: This study demonstrates the potential of SIMS microscopy, which allows the study of ultra structural distribution of a drug within a cell. On the basis of our observations, drug internalization via membrane sigma receptors can be excluded

    Draft Genome Sequence of the Pathogenic Fungus Scedosporium apiospermum

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The first genome of one species of the Scedosporium apiospermum complex, responsible for localized to severe disseminated infections according to the immune status of the host, will contribute to a better understanding of the pathogenicity of these fungi and also to the discovery of the mechanisms underlying their low susceptibility to current antifungals.This work was supported by a grant (RF20120600725) from the association Vaincre la Mucoviscidose (France), which is gratefully acknowledged
    • 

    corecore