575 research outputs found

    Unbiased estimates of galaxy scaling relations from photometric redshift surveys

    Full text link
    Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the color-magnitude relation, the luminosity-size relation, the Fundamental Plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity), is often distance-dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the V_max method, and the other is a maximum likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalog, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation

    Weak Lensing Mass Measurements of Substructures in COMA Cluster with Subaru/Suprime-Cam

    Get PDF
    We obtain the projected mass distributions for two Subaru/Suprime-Cam fields in the southwest region (r\simlt 60') of the Coma cluster (z=0.0236) by weak lensing analysis and detect eight subclump candidates. We quantify the contribution of background large-scale structure (LSS) on the projected mass distributions using SDSS multi-bands and photometric data, under the assumption of mass-to-light ratio for field galaxies. We find that one of eight subclump candidates, which is not associated with any member galaxies, is significantly affected by LSS lensing. The mean projected mass for seven subclumps extracted from the main cluster potential is = (5.06\pm1.30)10^12h^-1 M_sun after a LSS correction. A tangential distortion profile over an ensemble of subclumps is well described by a truncated singular-isothermal sphere model and a truncated NFW model. A typical truncated radius of subclumps, r_t\simeq 35 h^-1 kpc, is derived without assuming any relations between mass and light for member galaxies. The radius coincides well with the tidal radius, \sim42 h^-1 kpc, of the gravitational force of the main cluster. Taking into account the incompleteness of data area, a projection effect and spurious lensing peaks, it is expected that mass of cluster substructures account for 19 percent of the virial mass, with 13 percent statistical error. The mass fraction of cluster substructures is in rough agreement with numerical simulations.Comment: ApJ, accepted, 16 pages, 10 figures and 4 tables. High-resolution pictures available at http://www.asiaa.sinica.edu.tw/~okabe/files/comaWL.pd

    The CoNFIG Catalogue - II. Comparison of Space Densities in the FR Dichotomy

    Full text link
    This paper focuses on a comparison of the space densities of FRI and FRII sources at different epochs, with a particular focus on FRI sources. First, we present the concluding steps in constructing the Combined NVSS-FIRST Galaxy catalogue (CoNFIG), including new VLA observations, optical identifications and redshift estimates. The final catalogue consists of 859 sources over 4 samples (CoNFIG-1, 2, 3 and 4 with flux density limits of S_1.4GHz = 1.3, 0.8, 0.2 and 0.05 Jy respectively). It is 95.7% complete in radio morphology classification and 74.3% of the sources have redshift data. Combining CoNFIG with complementary samples, the distribution and evolution of FRI and FRII sources are investigated. We find that FRI sources undergo mild evolution and that, at the same radio luminosity, FRI and FRII sources show similar space density enhancements in various redshift ranges, possibly implying a common evolution.Comment: 15 pages, 15 figures, 6 tables + appendix (80 pages). accepted in M.N.R.A.

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    UV-to-FIR analysis of Spitzer/IRAC sources in the Extended Groth Strip II: Photometric redshifts, Stellar masses and Star formation rates

    Get PDF
    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Barro et al. 2011a, Paper I), we present a detailed SED analysis of nearly 80,000 IRAC 3.6+4.5 micron selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] < 23.75 (85% completeness level of the IRAC survey) over 0.48 square degrees. The typical photometric redshift accuracy is Delta z/(1+z)=0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and IMFs in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 micron data available in the EGS. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z≳\gtrsim1.5 observed when only MIPS 24 micron data is available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the web-interface utility Rainbow-navigatorComment: 39 pages, 22 figures, Accepted for publication in ApJ. Access the Rainbow Database at: http://rainbowx.fis.ucm.e

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    Determination of retained tritium from ILW dust particles in JET

    Get PDF
    Quantitative tritium inventory in dust particles from campaigns in the JET tokamak with the carbon wall (2007–2009) and the ITER-like wall (ILW 2011–2012) were determined by the liquid scintillation counter and the full combustion method. A feature of this full combustion method is that dust particles were covered by a tin (Sn) which reached 2100 K during combustion under oxygen flow. The specific tritium inventory for samples from JET with carbon and with metal walls was measured and found to be similar. However, the total tritium inventory in dust particles from the ILW experiment was significantly smaller in comparison to the carbon wall due to the lower amount of dust particles generated in the presence of metal walls
    • 

    corecore