133 research outputs found

    Mount St. Helens aerosol evolution

    Get PDF
    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months

    Fiscal year 1976 progress report on a feasibility study evaluating the use of surface penetrators for planetary exploration

    Get PDF
    The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites

    Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer

    Full text link
    The incorporation of phosphorus in silicon is studied by analyzing phosphorus delta-doped layers using a combination of scanning tunneling microscopy, secondary ion mass spectrometry and Hall effect measurements. The samples are prepared by phosphine saturation dosing of a Si(100) surface at room temperature, a critical annealing step to incorporate phosphorus atoms, and subsequent epitaxial silicon overgrowth. We observe minimal dopant segregation (5 nm), complete electrical activation at a silicon growth temperature of 250 degrees C and a high two-dimensional electron mobility of 100 cm2/Vs at a temperature of 4.2 K. These results, along with preliminary studies aimed at further minimizing dopant diffusion, bode well for the fabrication of atomically precise dopant arrays in silicon such as those found in recent solid-state quantum computer architectures.Comment: 3 pages, 4 figure

    STM characterization of the Si-P heterodimer

    Full text link
    We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to study the behavior of adsorbed phosphine (PH3_{3}) on Si(001), as a function of annealing temperature, paying particular attention to the formation of the Si-P heterodimer. Dosing the Si(001) surface with {\sim}0.002 Langmuirs of PH3_{3} results in the adsorption of PHx_{x} (x=2,3) onto the surface and some etching of Si to form individual Si ad-dimers. Annealing to 350^{\circ}C results in the incorporation of P into the surface layer to form Si-P heterodimers and the formation of short 1-dimensional Si dimer chains and monohydrides. In filled state STM images, isolated Si-P heterodimers appear as zig-zag features on the surface due to the static dimer buckling induced by the heterodimer. In the presence of a moderate coverage of monohydrides this static buckling is lifted, rending the Si-P heterodimers invisible in filled state images. However, we find that we can image the heterodimer at all H coverages using empty state imaging. The ability to identify single P atoms incorporated into Si(001) will be invaluable in the development of nanoscale electronic devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi

    Al0.2Ga0.8As solar cells monolithically grown on Si and GaAs by MBE for III-V/Si tandem dual-junction applications

    Get PDF
    Al0.2Ga0.8As photovoltaic solar cells have been monolithically grown on silicon substrates by Molecular Beam Epitaxy. Due to the 4% lattice mismatch between AlGaAs and Si, Threading Dislocations (TDs) nucleate at the III-V/Si interface and propagate to the active region of the cells where they act as recombination centers, reducing the performances of the devices. In order to reduce the Threading Dislocation Density (TDD) in the active layers of the cells, InAlAs Strained Layer Superlattice (SLS) Dislocation Filter Layers (DFLs) have been used. For one of the samples, in-situ Thermal Cycle Annealing (TCA) steps have additionally been performed during growth. For comparison purposes, reference Al0.2Ga0.8As solar cells have been grown lattice-matched on GaAs. For the sample grown on Si without TCA, the TDD has been reduced from over 7×109cm-2 at the III-V/Si interface to 3×107cm-2 in the base of the cells. With TCA, the TDD has been reduced throughout the sample from over 3×109cm-2 in the initial epilayers to 8(±2)×106cm-2 in the base of the cells. For the best devices, the Voc improves from 833mV on Si without TCA to 895mV using TCA, compared with 1070mV for the reference sample grown lattice-matched on GaAs. Similarly the fill factor improves from 73.7% on Si without TCA to 74.8% using TCA, compared with 78.4% on GaAs. The high bandgap-voltage offset obtained both on Si and GaAs indicates a non-optimal bulk AlGaAs material quality due to non-ideal growth conditions

    Factors Affecting European Farmers’Participation in Biodiversity Policies

    Get PDF
    This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160 publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though clearly not sufficient condition in this process

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans.

    Get PDF
    Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues

    Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium.

    Get PDF
    During aging, progenitor cells acquire mutations, which may generate clones that colonize the surrounding tissue. By middle age, normal human tissues, including the esophageal epithelium (EE), become a patchwork of mutant clones. Despite their relevance for understanding aging and cancer, the processes that underpin mutational selection in normal tissues remain poorly understood. Here, we investigated this issue in the esophageal epithelium of mutagen-treated mice. Deep sequencing identified numerous mutant clones with multiple genes under positive selection, including Notch1, Notch2 and Trp53, which are also selected in human esophageal epithelium. Transgenic lineage tracing revealed strong clonal competition that evolved over time. Clone dynamics were consistent with a simple model in which the proliferative advantage conferred by positively selected mutations depends on the nature of the neighboring cells. When clones with similar competitive fitness collide, mutant cell fate reverts towards homeostasis, a constraint that explains how selection operates in normal-appearing epithelium.This work was supported by grants from the Wellcome Trust to the Wellcome SangerInstitute (098051 and 296194) and Cancer Research UK Programme Grants to P.H.J.(C609/A17257 and C609/A27326). G.P. is supported by a Talento program fellowship from Comunidad de Madrid. B.A.H. and M.W.J.H. are supported by the MedicalResearch Council (Grant-in-Aid to the MRC Cancer unit grant no. MC_UU_12022/9 and NIRG to B.A.H. grant no. MR/S000216/1). M.W.J.H. acknowledges support fromthe Harrison Watson Fund at Clare College, Cambridge. B.A.H. acknowledges support from the Royal Society (grant no. UF130039). I.M. is funded by Cancer Research UK (C57387/A21777). S.D. benefited from the award of an ESPOD fellowship, 2018-21, from the Wellcome Sanger Institute and the European Bioinformatics Institute EMBL-EBI
    corecore