5,043 research outputs found

    Optimization of Excitation in FDTD Method and Corresponding Source Modeling

    Get PDF
    Source and excitation modeling in FDTD formulation has a significant impact on the method performance and the required simulation time. Since the abrupt source introduction yields intensive numerical variations in whole computational domain, a generally accepted solution is to slowly introduce the source, using appropriate shaping functions in time. The main goal of the optimization presented in this paper is to find balance between two opposite demands: minimal required computation time and acceptable degradation of simulation performance. Reducing the time necessary for source activation and deactivation is an important issue, especially in design of microwave structures, when the simulation is intensively repeated in the process of device parameter optimization. Here proposed optimized source models are realized and tested within an own developed FDTD simulation environment

    Noncommutativity relations in type IIB theory and their supersymmetry

    Full text link
    In the present paper we investigate noncommutativity of D9D9 and D5D5-brane world-volumes embedded in space-time of type IIB superstring theory. Boundary conditions, which preserve half of the initial supersymmetry, are treated as canonical constraints. Solving the constraints we obtain original coordinates in terms of the effective coordinates and momenta. Presence of momenta induces noncommutativity of string endpoints. We show that noncommutativity relations are connected by N=1 supersymmetry transformations and noncommutativity parameters are components of N=1 supermultiplet

    Performance Improvement of QPSK Signal Predetection EGC Diversity Receiver

    Get PDF
    This paper proposes a modification of quadrature phase-shift-keying (QPSK) signal diversity reception with predetection equal gain combiner (EGC). The EGC combining is realized by using the constant modulus algorithm (CMA). Carrier synchronization is performed by the phase locked loop (PLL). Comparative analysis of the modified and ordinary diversity receiver in the presence of carrier frequency offset in the additive white Gaussian noise (AWGN) channel, as well as in Rician fading channel is shown. The proposed diversity receiver allows significant frequency offset compared to the diversity receiver that uses only PLL, and the error probability of the proposed receiver is very close to the error probability of the receiver with only PLL and zero frequency offset. The functionality of the proposed diversity receiver, as well as its properties is experimentally verified on a system based on universal software radio peripheral (USRP) hardware. The performed comparison confirms the expected behavior of the system

    Design of generalized Chebyshev lumped element filters by computer optimisation

    Get PDF
    A numerical method for the optimization of symmetrical lumped element low-pass and band-pass filters with a generalized Chebyshev response is considered. By exploiting the fact that a network based on generalized Chebyshev prototype has a prescribed number of turning points in the insertion loss and an identical number of independent parameters which can be assigned as variables to adjust their levels, the method gives fast convergence

    Structural and electrical properties of Ti doped α-Fe2O3

    Get PDF
    In this work we have analyzed the effects of Ti doping on structural and electrical properties of α-Fe2O3. When the amount of added Ti (5 wt.%TiO2) was within the solubility degree and XRD, SEM and EDS analysis revealed a homogenous hematite structure, with lattice parameters a= 5.03719(3) Å, c=13.7484(1) Å slightly increased due to incorporation of Ti into the rhombohedral hematite lattice. Higher amounts of Ti (10 wt.%TiO2) resulted in the formation of pseudobrookite, besides hematite, confirmed by SEM and EDS analysis. Studies of electric properties in the temperature range 25-225oC at different frequencies (100 - 1Mz) showed that Ti doping improved electrical conductivity. Impedance analysis was performed using an equivalent circuit, showing one relaxation process and suggesting dominant grain boundary contribution. [Projekat Ministarstva nauke Republike Srbije, br. III45014 i br. III43008

    Effect of bicarbonate on uptake and translocation of 59Fe in two grapevine rootstocks differing in their resistance to Fe deficiency chlorosis

    Get PDF
    In order to study the effect of high bicarbonate concentration in the root medium on root FeIII reduction, Fe uptake and its translocation to the leaves, two rootstocks (Vitis riparia Michx., susceptible, and 41 B (Vitis vinifera L. cv. Chasselas x Vitis berlandieri Planch.), resistant to Fe deficiency chlorosis) were pre-cultivated in nutrient solutions with high and low Fe supply. After three weeks of preculture at low Fe, chlorosis symptoms occurred in both, Fe-resistant and Fe-susceptible genotypes. The FeIII reducing capacity by roots was enhanced at Fe deficiency in both genotypes, which was consistent with the increase of subsequent root uptake and translocation rates of 59Fe. In the presence of bicarbonate in the solutions the FeIII reducing capacity, 59Fe uptake and translocation rate decreased in both genotypes precultured with low re supply. The 59Fe uptake and translocation rate, however, were significantly higher in the Fe chlorosis-resistant rootstock 41 B. These results clearly indicate that bicarbonate-induced Fe chlorosis in grapevine rootstocks is obviously caused by an inhibition of Fe uptake and translocation due to an inhibition of FeIII reduction by root cells. The fact that these processes were less inhibited in the chlorosis-resistant rootstock hints to genotypical differences in Fe acquisition by roots at high bicarbonate levels. These differences might be used in breeding programs to identify Fe chlorosis-resistant rootstocks

    A combined finite-discrete element model for reinforced concrete under seismic load

    Get PDF
    In this work a numerical model for analysis of reinforced concrete structures under seismic load is presented. The model uses the combined finite-discrete element method; thus taking into account the discontinuous nature of the reinforced concrete at the failure stages. The application of the combined finite-discrete element method includes a number of deformable discrete elements that interact with each other, fracture, fragmentation and disjoint during the seismic load. To these a robust model for reinforcement bars has been added. Interaction solutions between bars and concrete have also been developed and implemented into the open source Y2D combined finite-discrete element code. This way it is possible to describe initiation of the cracks, crack propagation and fracture which are important mechanisms in the analysis of reinforced concrete structures under seismic load. Through numerical examples these have been demonstrated and tested using reinforced concrete structure under an experimentally recorded earthquake accelelogram

    Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms

    Get PDF
    Topological insulators are a broad class of unconventional materials that are insulating in the interior but conduct along the edges. This edge transport is topologically protected and dissipationless. Until recently, all existing topological insulators, known as quantum Hall states, violated time-reversal symmetry. However, the discovery of the quantum spin Hall effect demonstrated the existence of novel topological states not rooted in time-reversal violations. Here, we lay out an experiment to realize time-reversal topological insulators in ultra-cold atomic gases subjected to synthetic gauge fields in the near-field of an atom-chip. In particular, we introduce a feasible scheme to engineer sharp boundaries where the "edge states" are localized. Besides, this multi-band system has a large parameter space exhibiting a variety of quantum phase transitions between topological and normal insulating phases. Due to their unprecedented controllability, cold-atom systems are ideally suited to realize topological states of matter and drive the development of topological quantum computing.Comment: 11 pages, 6 figure
    corecore