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Abstract

A numeriéél method for the opﬁn;izatibn of a symmetrical ‘

lumped - elémient ‘lowpass. and bandpass filters with
Generalized Cheyshev response is considered. By
exploiting the fact that a network based on generalized
Chebyshev prototype has a prescribed number of turning
points in the insértion loss and an identical number of
independent ‘parameters’ which can be' assigned os
variables to’ adjust their levels thc method nges fast
convergence.
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1. INTRODUCTION

When a common approach to the design of filters results
- in a design passband which differs considerably from that
which is specified, optimization, is required to tune the
filter elements to achieve a design that meets certain
requirements. Most RF and microwave filters have not
yielded exact optimum synthesis. Taking into account
parasitic effects; high frequency operation, frequency
dependent elements, a narrow range of element values,
and so on, a common approach to design provides, at best,
only approximate answers. Not infrequently, a common
approach may be used to great advantage in providing the
initial points for optimization. In this paper, we introduce
an optimization procedure based on equal ripple
optimisation to optimise filters based upon Generalized
Chebyshev function prototype.

0-7803-7527-0/02/$17.00 ©2002 IEEE. 475

This method searches for tuning points in the filter transfer
function and forces the ripple levels at these points to have
specified values. The method requires knowledge of the
filter insertion or return loss at these points.

The method will generate a set of equations which are
solved to give a new set of parameter values. The cycle is
then repeated, until the filter characteristic is within an
arbitrarily close value to the desired specification. This
technique requires 'less calculation of the -electrical
parameters of filter discontinuity than generalised
optimization routines so far applied [1].

2 PROBLEM FORMULATION

The double terminated low-pass prototype network
shown in Figure 1 satisfies a generalized Chebyshev
insertion loss response.

Figure 1. Generalised Chebyshev low pass
prototype

This characteristic in terms of insertion loss, L is
given by

1
2\
L=1+5" cosh (n—-l)cosh_l -(;0 ZT +cosh | w (¢))

Wy ~w

where the transmission zeros are of order (7-1) at
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w=1w, and one at infinity. » is an odd number equal

1
to the degree of the network, & = [10‘”"7{0) —l] 2

and R.L. is the minimum retum loss level (dB) in the
passband.

A typical inserﬁonkssrcsponseisillushatedinl?igme
la, where w, is the frequency of the minimum
insertion loss level in the stopband and w,; is the
bandedge frequency of the stopband.

In general, approximate methods based on the
synthesis of a generalized Chebyshev prototype to the
design a i filter will not meet the
specifications satisfied by (1). Assume that an nth
degree symmetrical low-pass filter has an insertion
loss response L; of the form shown in Figure la. It
exhibits m-1 (m=n-I) zeros and m-2 ripples, the
maxima of which occur at the frequencies /3, /;,../fa
For a symmetrical low-pass filter all of these m-2
frequencies lie within the specified passband f; = £.
The deviation of a ripple maximum from the
maximum allowed insertion loss in the passband, L,
is a function of the m=n+] = symmetrical filter
parameter values required to specify the low-pass
filter. There are n-7 such functions for the symmetrical
case:

E=L(f)-L., i=12,3.53 »

E.and E,, are defined by:

E=L{(f.)-Ly - 3

Ew=Li( f,)-Lu - @

E,, E, are also functions of the m=n-1 parameter
values of the symmetrical filter.

The specifications v

Li(f)sL, ,0<f<f, e
L(f)2L, . f.SSS/,

are satisfied when

E=0, i=1,23..m . ©
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This is a system of m=n-/ nonlinear equations in
m=n-1 variables for the symmetrical case. Solving (6)
gives .the parameter values of a filter satisfying (5).
The E, (i = 1,....m) can be regarded as the components
of an m dimensional error vector. Optimization is
carried out by equating each of these components to

- zero (a vector process) rather than minimizing the

magnitude of the vector (a scalar process). Thus equal
ripple optimization can be regarded as a vector
procedure whereas general purpose optimization
routines are scalar procedures. Usually the
convergence criterion applicd in general purpose
optimization routines is that the gradient, with respect
to the filter elements, of the magnitude of the error
vector is zero. However a zero gradient may
correspond to a local minimun and the error may not
be truly minimized. The convergence criterion applied
in equal ripple optimization is that each component of
the error vector is zero. Thus on convergence the error
is reduced to zero. The problem of local minima does

To apply an iterative nonlinear equation solver it is
necessary for a given set of filter parameter values to
know the insertion loss only at the bandedge
frequency, f;, (minimum) and at the ripple maxima,
However, the frequencies at which the ripple maxima
occur are unknown and are fimctions of the filter
parameter values.

The Newton-Raphson method [4] is a rapidly
convergent technique for the solution of a system of
nonlinear equations if a good initial approximation is
available. The number of times the fimction is
evaluated in the process of finding its root is the usual
measure of computational effort. This includes
function evaluations required to calculate derivatives
numerically. )

The Newton-Raphson method has the general form [5])
= - FIEDERD o

where k is the iteration number (k=1,2,...) and J' is the
inverse of the m x m Jacobian matrix evaluated at

&' The above identifies the regions within the
passband which need to be sampled in order to
calculate E(¥) (and J(x*)). The response and errors
after each iteration are computed again with the new
corrected parameters, until the errors are judged to be
sufficiently small.



3 NUMERICAL RESULTS

In order to illustrate our approach, a fifth order
" lumped element low-pass and band-pass filters
have been designed. The low-pass filter can be
described by 4 parameters: inductors (L1=LS,
L2=14, L3) and capacitor (C2=C4) as marked in
- Figure 2. We used equal ripple optimization with
L1, L2, L3 and C2 as variables for filter shown in
Figure 2. Figure 3a shows the calculated return
loss (dashed line) and insertion loss (solid line) of
- filter before optimization. The return loss (dashed
line) and insertion loss (solid line) calculated using
the filter elements obtained on convergence are
shown in Figure 3b. The band-pass filter can be
- described by 6 parameters: inductors (L1=LS5,
L2=14, L3) and capacitors (C1=C5, C2=C4, C3) as
marked in Figure 4. We used equal ripple
optimization with L1, L2, L3 and C1, C2, C3 as
variables for filter shown in Figure 4. Figure 5a
shows the calculated return loss (solid line) and
insertion loss (dashed line) of filter before
optimization. The return loss (solid line) and
insertion loss (dashed line) calculated using the
filter elements obtained on convergence are shown
in Figure 5b
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Figure 2. Generalized Chebyshev
low-pass filter
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Figure 3a. Simulated Insertion and Return

loss of generalized Chebyshev low pass filter
before optimization
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Figure 3b. Simulated Insertion and Return
loss of generalized Chebyshev low pass filter
8 mization

Figure 4. Generalized Chebyshev
band-pass filter



0.00
Return loss (dB/) {

&
]
i .

[N

cowasso”

~
seaant

4000/ Ingertion loss (dB)
‘l
T
«£60.00 -
-80.00 — T " T 1
0.00 10.00 20.00 30.00 40.00
Frequency (GHz)

Figure Sa. Simulated Insertion and Return
loss of generalized Chebyshev band-pass

filter before optimization
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Figure 5b. Simulated Insertion and Return
loss of generalized Chebyshev band pass
filter after optimization

4 CONCLUSION

The method presented here offers a simple but reliable
methed for optimization of low-pass and band-pass
filters with Generalized Chebyshev function prototype.
The method provides fast convergence.
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