1,153 research outputs found

    A Survey of Best Monotone Degree Conditions for Graph Properties

    Full text link
    We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvatal's well-known degree condition for hamiltonicity is best possible.Comment: 25 page

    Status, Features, and Future Development of the LIFUS5/Mod4 Experimental Facility Design

    Get PDF
    The Water-Cooled Lithium–Lead (WCLL) is one of the most promising technologies for power conversion and tritium production in future fusion-powered reactors; it will be implemented in one of the Test Breeding Modules (TBM) inside the ITER reactor and the DEMO EU reactor. However, the simultaneous presence in the system of high-temperature PbLi and high-pressure water poses significant safety issues in the event of an in-box LOCA (Loss Of Coolant Accident). For this reason, a complete understanding of the system response is crucial to avoid extensive damage in such a scenario. This paper describes the status and design features of the LIFUS5/Mod4 facility, an experimental plant that is currently being designed and constructed at ENEA CR Brasimone in the framework of the FP9 EUROfusion Horizon Europe to address these issues. This facility aims at being representative of the geometry and operational conditions of the Test Breeding System (TBS) to allow the precise reproduction of its behavior under simulated incidental scenarios. For this reason, peculiar design choices have been made, which will be extensively discussed throughout this work and which will allow the generation of high-quality data useful for the TBS development. Moreover, the facility is expected to become a test stand for the implementation of different safety functions, to identify the best accident-mitigation strategy. Possible upgrade plans for the facility are described as well, with the chance for it to become a fully functional test stand for any component of the TBS in their operative conditions

    System thermal-hydraulic modelling of the phénix dissymmetric test benchmark

    Get PDF
    Phénix is a French pool-type sodium-cooled prototype reactor; before the definitive shutdown, occurred in 2009, a final set of experimental tests are carried out in order to increase the knowledge on the operation and the safety aspect of the pool-type liquid metal-cooled reactors. One of the experiments was the Dissymmetric End-of-Life Test which was selected for the validation benchmark activity in the frame of SESAME project. The computer code validation plays a key role in the safety assessment of the innovative nuclear reactors and the Phénix dissymmetric test provides useful experimental data to verify the computer codes capability in the asymmetric thermal-hydraulic behaviour into a pool-type liquid metal-cooled reactor. This paper shows the comparison of the outcomes obtained with six different System Thermal-Hydraulic (STH) codes: RELAP5-3D©, SPECTRA, ATHLET, SAS4A/SASSYS-1, ASTEC-Na and CATHARE. The nodalization scheme of the reactor was individually achieved by the participants; during the development of the thermal-hydraulic model, the pool nodalization methodology had a special attention in order to investigate the capability of the STH codes to reproduce the dissymmetric effects which occur in each loop and into pools, caused by the azimuthal asymmetry of the boundary conditions. The modelling methodology of the participants is discussed and the main results are compared in this paper to obtain useful guide lines for the future modelling of innovative liquid metal pool-type reactors

    Experimental characterization of leak detection systems in HLM pool using LIFUS5/Mod3 facility

    Get PDF
    In the framework of the European Union MAXSIMA project, the safety of the steam generator (SG) adopted in the primary loop of the Heavy Liquid Metal Fast Reactor has been studied investigating the consequences and damage propagation of a SG tube rupture event and characterizing leak rates from typical cracks. Instrumentation able to promptly detect the presence of a crack in the SG tubes may be used to prevent its further propagation, which would lead to a full rupture of the tube. Application of the leak-before-break concept is relevant for improving the safety of a reactor system and decreasing the probability of a pipe break event. In this framework, a new experimental campaign (Test Series C) has been carried out in the LIFUS5/Mod3 facility, installed at ENEA Centro Ricerche Brasimone, in order to characterize and to correlate the leak rate through typical cracks occurring in the pressurized tubes with signals detected by proper transducers. Test C1.3_60 was executed injecting water at about 20 bars and 200°C into lead-bismuth eutectic alloy. The injection was performed through a laser microholed plate 60 ÎŒm in diameter. Analysis of the thermohydraulic data permitted characterization of the leakage through typical cracks that can occur in the pressurized tubes of the SG. Analysis of the data acquired by microphones and accelerometers highlighted that it is possible to correlate the signals to the leakage and the rate of release

    Electromagnetic Excitations and Responses in Nuclei from First Principles

    Get PDF
    We discuss the role of clustering on monopole, dipole, and quadrupole excitations in nuclei in the framework of the ab initio symmetry-adapted no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon potentials and, by exploring symmetries known to dominate the nuclear dynamics, can reach nuclei up through the calcium region by accommodating ultra-large model spaces critical to descriptions of clustering and collectivity. The results are based on calculations of electromagnetic sum rules and discretized responses using the Lanczos algorithm, that can be used to determine response functions, and for 4He are benchmarked against exact solutions of the hyperspherical harmonics method. In particular, we focus on He, Be, and O isotopes, including giant resonances and monopole sum rules.Comment: 6 pages, 4 figures, Proceedings of the Fourth International Workshop on State of the Art in Nuclear Cluster Physics, Galveston, TX, USA, May 13-18, 201

    Electromagnetic Excitations and Responses in Nuclei from First Principles

    Get PDF
    We discuss the role of clustering on monopole, dipole, and quadrupole excitations in nuclei in the framework of the ab initio symmetry-adapted no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon potentials and, by exploring symmetries known to dominate the nuclear dynamics, can reach nuclei up through the calcium region by accommodating ultra-large model spaces critical to descriptions of clustering and collectivity. The results are based on calculations of electromagnetic sum rules and discretized responses using the Lanczos algorithm, that can be used to determine response functions, and for 4He are benchmarked against exact solutions of the hyperspherical harmonics method. In particular, we focus on He, Be, and O isotopes, including giant resonances and monopole sum rules.Comment: 6 pages, 4 figures, Proceedings of the Fourth International Workshop on State of the Art in Nuclear Cluster Physics, Galveston, TX, USA, May 13-18, 201

    Natural Variation in Grain Selenium Concentration of Wild Barley, Hordeum spontaneum, Populations from Israel

    Get PDF
    Wild barley (Hordeum spontaneum), the progenitor of cultivated barley, is an important genetic resource for cereal improvement. Selenium (Se) is an essential trace mineral for humans and animals with antioxidant, anticancer, antiarthropathy, and antiviral effects. In the current study, the grain Se concentration (GSeC) of 92 H. spontaneum genotypes collected from nine populations representing different habitats in Israel was investigated in the central area of Guizhou Province, China. Remarkable variations in GSeC were found between and within populations, ranging from 0 to 0.387 mg kg−1 among the 92 genotypes with an average of 0.047 mg kg−1. Genotype 20_C from the Sede Boqer population had the highest GSeC, while genotype 25_1 from the Atlit population had the lowest. The mean value of GSeC in each population varied from 0.010 to 0.105 mg kg−1. The coefficient of variation for each population ranged from 12% to 163%. Significant correlations were found between GSeC and 12 ecogeographical factors out of 14 studied. Habitat soil type also significantly affected GSeC. The wild barley exhibited wider GSeC ranges and greater diversity than its cultivated counterparts. The higher Se grain concentrations found in H. spontaneum populations suggest that wild barley germplasm confer higher abilities for Se uptake and accumulation, which can be used for genetic studies of barley nutritional value and for further improvement of domesticated cereals
    • 

    corecore