19 research outputs found
Cohort profile: design and methods in the eye and vision consortium of UK Biobank
PURPOSE: To describe the rationale, methods and research potential of eye and vision measures available in UK Biobank.
PARTICIPANTS: UK Biobank is a large, multisite, prospective cohort study. Extensive lifestyle and health questionnaires, a range of physical measures and collection of biological specimens are collected. The scope of UK Biobank was extended midway through data collection to include assessments of other measures of health, including eyes and vision. The eye assessment at baseline included questionnaires detailing past ophthalmic and family history, measurement of visual acuity, refractive error and keratometry, intraocular pressure (IOP), corneal biomechanics, spectral domain optical coherence tomography (OCT) of the macula and a disc-macula fundus photograph. Since recruitment, UK Biobank has collected accelerometer data and begun multimodal imaging data (including brain, heart and abdominal MRI) in 100 000 participants. Dense genotypic data and a panel of 20 biochemistry measures are available, and linkage to medical health records for the full cohort has begun.
FINDINGS TO DATE: A total of 502 665 people aged between 40 and 69 were recruited to participate in UK Biobank. Of these, 117 175 took part in baseline assessment of vision, IOP, refraction and keratometry. A subgroup of 67 321 underwent OCT and retinal photography. The introduction of eye and vision measures in UK Biobank was accompanied by intensive training, support and a data monitoring quality control process.
FUTURE PLANS: UK Biobank is one of the largest prospective cohorts worldwide with extensive data on ophthalmic diseases and conditions. Data collection is an ongoing process and a repeat of the baseline assessment including the questionnaires, measurements and sample collection will be performed in subsets of 25 000 participants every 2-3 years. The depth and breadth of this dataset, coupled with its open-access policy, will create a powerful resource for all researchers to investigate the eye diseases in later life
Measures of socioeconomic status and self-reported glaucoma in the UK Biobank cohort
Purpose: To determine ocular, demographic, and socioeconomic associations with self-reported glaucoma in the UK Biobank.Methods: Biobank is a study of UK residents aged 40–69 years registered with the National Health Service. Data were collected on visual acuity, intraocular pressure (IOP), corneal biomechanics, and questionnaire from 112?690 participants. Relationships between ocular, demographic, and socioeconomic variables with reported diagnosis of glaucoma were examined.Results: In all, 1916 (1.7%) people in UK Biobank reported glaucoma diagnosis. Participants reporting glaucoma were more likely to be older (mean 61.4 vs 56.7 years, P<0.001) and male (2.1% vs 1.4%, P=0.001). The rate of reported glaucoma was significantly higher in Black (3.28%, P<0.001) and Asian (2.14%, P=0.009) participants compared with White participants (1.62%, reference). Cases of reported glaucoma had a higher mean IOP (18?mm?Hg both eyes, P<0.001), lower corneal hysteresis (9.96 right eye, 9.89 left eye, P<0.001), and lower visual acuity (0.09 logMAR right eye, 0.08 logMAR left eye, P<0.001) compared with those without (16?mm?Hg both eyes, hysteresis 10.67 right eye, 10.63 left eye, 0.03 logMAR right eye, 0.02 logMAR left eye). The mean Townsend deprivation index was ?0.72 for those reporting glaucoma and ?0.95 for those without (P<0.001), indicating greater relative deprivation in those reporting glaucoma. Multivariable logistic regression showed that people in the lowest income group (<£18?000/year) were significantly more likely to report a diagnosis of glaucoma compared with any other income level (P<0.01). We observed increasing glaucoma risk across the full range of income categories, with highest risk among those of lowest income, and no evidence of a threshold effect.Conclusions: In a large UK cohort, individuals reporting glaucoma had more adverse socioeconomic characteristics. Study of the mechanisms explaining these effects may aid our understanding of health inequality and will help inform public health interventions
Suitability of UK biobank retinal images for automatic analysis of morphometric properties of the vasculature
To assess the suitability of retinal images held in the UK Biobank--the largest retinal data repository in a prospective population-based cohort--for computer assisted vascular morphometry, generating measures that are commonly investigated as candidate biomarkers of systemic disease.Non-mydriatic fundus images from both eyes of 2,690 participants--people with a self-reported history of myocardial infarction (n=1,345) and a matched control group (n=1,345)--were analysed using VAMPIRE software. These images were drawn from those of 68,554 UK Biobank participants who underwent retinal imaging at recruitment. Four operators were trained in the use of the software to measure retinal vascular tortuosity and bifurcation geometry.Total operator time was approximately 360 hours (4 minutes per image). 2,252 (84%) of participants had at least one image of sufficient quality for the software to process, i.e. there was sufficient detection of retinal vessels in the image by the software to attempt the measurement of the target parameters. 1,604 (60%) of participants had an image of at least one eye that was adequately analysed by the software, i.e. the measurement protocol was successfully completed. Increasing age was associated with a reduced proportion of images that could be processed (p=0.0004) and analysed (p<0.0001). Cases exhibited more acute arteriolar branching angles (p=0.02) as well as lower arteriolar and venular tortuosity (p<0.0001).A proportion of the retinal images in UK Biobank are of insufficient quality for automated analysis. However, the large size of the UK Biobank means that tens of thousands of images are available and suitable for computational analysis. Parametric information measured from the retinas of participants with suspected cardiovascular disease was significantly different to that measured from a matched control group
Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development
A genetic contribution to refractive error has been confirmed by the discovery of more than 150 associated variants in genome-wide association studies (GWAS). Environmental factors such as education and time outdoors also demonstrate strong associations. Currently however, the extent of gene-environment or gene-gene interactions in myopia is unknown. We tested the hypothesis that refractive error-associated variants exhibit effect size heterogeneity, a hallmark feature of genetic interactions. Of 146 variants tested, evidence of non-uniform, non-linear effects were observed for 66 (45%) at Bonferroni-corrected significance (P < 1.1 × 10−4) and 128 (88%) at nominal significance (P < 0.05). LAMA2 variant rs12193446, for example, had an effect size varying from −0.20 diopters (95% CI −0.18 to −0.23) to −0.89 diopters (95% CI −0.71 to −1.07) in different individuals. SNP effects were strongest at the phenotype extremes and weaker in emmetropes. A parsimonious explanation for these findings is that gene-environment or gene-gene interactions in myopia are pervasive
Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error.
Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia
Multi-trait genome-wide association study identifies new loci associated with optic disc parameters
A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH
A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration
Background
High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ −6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER.
Methods
The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression.
Findings
In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17–21%), 2% (1–3%), 8% (7–10%) and 6% (3–9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75–0.81), 0.58 (0.53–0.64), 0.71 (0.69–0.74) and 0.67 (0.62–0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92–1.24).
Interpretation
Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted fo
Recommended from our members
Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error
Abstract: Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia