448 research outputs found

    Statistics of Cosmological Black Hole Jet Sources: Blazar Predictions for GLAST

    Get PDF
    A study of the statistics of cosmological black-hole jet sources is applied to EGRET blazar data, and predictions are made for GLAST. Black-hole jet sources are modeled as collimated relativistic plasma outflows with radiation beamed along the jet axis due to strong Doppler boosting. The comoving rate density of blazar flares is assumed to follow a blazar formation rate (BFR), modeled by analytic functions based on astronomical observations and fits to EGRET data. The redshift and size distributions of gamma-ray blazars observed with EGRET, separated into BL Lac object (BL) and flat spectrum radio quasar (FSRQ) distributions, are fit with monoparametric functions for the distributions of the jet Lorentz factor \Gamma, comoving directional power l'_e, and spectral slope. A BFR factor ~10 x greater at z ~ 1 than at present is found to fit the FSRQ data. A smaller comoving rate density and greater luminosity of BL flares at early times compared to the present epoch fits the BL data. Based on the EGRET observations, ~1000 blazars consisting of ~800 FSRQs and FR2 radio galaxies and ~200 BL Lacs and FR1 radio galaxies will be detected with GLAST during the first year of the mission. Additional AGN classes, such as hard-spectrum BL Lacs that were mostly missed with EGRET, could add more GLAST sources. The FSRQ and BL contributions to the EGRET gamma-ray background at 1 GeV are estimated at the level of ~10 - 15% and ~2 - 4%, respectively. EGRET and GLAST sensitivities to blazar flares are considered in the optimal case, and a GLAST analysis method for blazar detection is outlined.Comment: 17 pages, 9 figures, ApJ, in press, v.660, May 1, 2007 (minor changes from previous version

    Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst

    Full text link
    The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is analyzed in terms of different variations of the homogeneous leptonic jet model for the production of high-energy radiation from blazars. We find that a two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and an external Compton component, is required in order to yield an acceptable fit to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other BL Lac objects, the broad emission line region plays an important role for the high-energy emission. Several alternative blazar jet models are briefly discussed. In the appendix, we describe the formalism in which the process of Comptonization of reprocessed accretion disk photons is treated in the previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal. Significantly extended discussion w.r.t. original version. 3 Figures included using epsf.sty, rotate.st

    Inclusive meson production in peripheral collisions of ultrarelativistic heavy ions

    Get PDF
    There exist several proposals to use Weizs\"{a}cker-Williams photons generated by ultrarelativistic heavy ions to produce exotic particles in γγ\gamma\gamma fusion reactions. To estimate the background conditions for such reactions we analyze various mechanisms of meson production in very peripheral collisions of ultrarelativistic heavy ions at RHIC and LHC energies. Besides γγ\gamma\gamma fusion they include also electromagnetic γA\gamma A interactions and strong nucleon-nucleon interactions in grazing AAAA collisions. All these processes are characterised by low multiplicities of produced particles. γA\gamma A and AAAA events are simulated by corresponding Monte Carlo codes, RELDIS and FRITIOF. In each of these processes a certain fraction of pions is produced close to the mid-rapidity region that gives a background for the γγ\gamma\gamma events. The possibility of selecting mesons produced in γγ\gamma\gamma fusion events via different ptp_t cut procedures is demonstrated.Comment: 27 pages with 4 eps-figures included, uses axodraw.sty Tab.2 and 3 correcte

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use

    Neutral Beams from Blazar Jets

    Get PDF
    We treat the production of neutrons, photons, and neutrinos through photomeson interactions of relativistic protons with ambient photons in the compact inner jets of blazars. We show that the presence of the external UV radiation field makes possible strong energy losses already for protons with energies > 1 PeV, while without this component effective energy losses of protons begin only at E > 10^{18} eV. We develop a model describing the production and escape of neutrons from a comoving spherical blob, which continue to interact with the ambient external radiation field on the parsec-scale broad line region (BLR). Neutrons may carry ~10% of the overall energy of the protons accelerated beyond E ~ 1 PeV outside the BLR. Ultra-high energy (UHE) gamma rays produced in photomeson interactions of neutrons outside the blob can also escape the BLR. The escaping neutrons, gamma rays and neutrinos form a collimated neutral beam with a characteristic opening angle ~ 1/Gamma, where Gamma is the bulk Lorentz factor of the inner jet. The energy and the momentum of such beam is then mostly deposited in the extended jet due to neutron decay at distances ~ (E_n/10^{17} eV}) kpc, and through pair-production attenuation of gamma rays with energies E_g ~ 10^{15}-10^{18} eV which can propagate to distances beyond (10-100) kpc. In this scenario, neutral beams of UHE gamma rays and neutrons can be the reason for straight extended jets such as in Pictor A. Fluxes of neutrinos detectable with km-scale neutrino telescopes are predicted from flat spectrum radio quasars such as 3C 279.Comment: to appear in ApJ 586, No.1, March 20 issu

    Dynamics of hollow atom formation in intense x-ray pulses probed by partial covariance mapping

    No full text
    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called "partial covariance mapping'' to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments
    • 

    corecore