34 research outputs found

    Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer

    Get PDF
    BACKGROUND: Recently, instruments for the measurement of wavefront aberration in the living human eye have been widely available for clinical applications. Despite the extensive background experience on wavefront sensing for research purposes, the information derived from such instrumentation in a clinical setting should not be considered a priori precise. We report on the variability of such an instrument at two different pupil sizes. METHODS: A clinical aberrometer (COAS Wavefront Scienses, Ltd) based on the Shack-Hartmann principle was employed in this study. Fifty consecutive measurements were perfomed on each right eye of four subjects. We compared the variance of individual Zernike expansion coefficients as determined by the aberrometer with the variance of coefficients calculated using a mathematical method for scaling the expansion coefficients to reconstruct wavefront aberration for a reduced-size pupil. RESULTS: Wavefront aberration exhibits a marked variance of the order of 0.45 microns near the edge of the pupil whereas the central part appears to be measured more consistently. Dispersion of Zernike expansion coefficients was lower when calculated by the scaling method for a pupil diameter of 3 mm as compared to the one introduced when only the central 3 mm of the Shack – Hartmann image was evaluated. Signal-to-noise ratio was lower for higher order aberrations than for low order coefficients corresponding to the sphero-cylindrical error. For each subject a number of Zernike expansion coefficients was below noise level and should not be considered trustworthy. CONCLUSION: Wavefront aberration data used in clinical care should not be extracted from a single measurement, which represents only a static snapshot of a dynamically changing aberration pattern. This observation must be taken into account in order to prevent ambiguous conclusions in clinical practice and especially in refractive surgery

    Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP)

    Get PDF
    The capability of environmental microorganisms to biodegrade simazine—an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)—was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100 mg/l) had an actual influence on quantity of bacteria and environmental fungi incubated on substrate with simazine. Most simazine-resistant bacteria populated activated sludge and biohumus (vermicompost); the biggest strain of resistant fungi was found in floral soil and risosphere soil of maize. Compost and biohumus were the sources of microorganisms which biodegraded simazine, though either of them was the dominant considering the quantity of simazine-resistant microorganisms. In both cases of periodic culture (microorganisms from biohumus and compost), nearly 100% of simazine (50 mg/l) was degraded (within 8 days). After the repeated enrichment culture with simazine, the rate of its degradation highly accelerated, and just after 24 h, the significant decrease of simazine (20% in compost and 80% in biohumus) was noted. Although a dozen attempts of isolating various strains responsible for biodegradation of simazine from compost and biohumus were performed, only the strain identified as Arthrobacter urefaciens (NC) was obtained, and it biodegraded simazine with almost 100% efficiency (within 4 days)

    Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Get PDF
    BACKGROUND: Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. METHODS: Partial pulmonary embolization (PPE) was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA) or 5 days (5d PPE; 110-115d GA). Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1 alpha abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-R alpha mRNA levels were measured using real-time PCR. RESULTS: At 130d GA (term approximately 147d), in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 +/- 1% in controls to 35 +/- 1% in 1d PPE and 44 +/- 1% in 5d PPE fetuses (p < 0.001). Secondary septal crest density was reduced from 8 +/- 0% in controls to 5 +/- 0% in 1d PPE and 4 +/- 0% in 5d PPE fetuses (p < 0.05), indicating impaired alveolar formation. The deposition of differentiated myofibroblasts (23 +/- 1% vs 28 +/- 1%; p < 0.001) and elastin fibres (3 +/- 0% vs 4 +/- 0%; p < 0.05) were also impaired in embolized lung regions of PPE fetuses compared to controls. PPE did not alter the deposition of collagen or PECAM1. At 116d GA in 5d PPE fetuses, markers of hypoxia indicated that a small and transient hypoxic event had occurred (hypoxia in 6.7 +/- 1.4% of the tissue within embolized regions of 5d PPE fetuses at 116d compared to 0.8 +/- 0.2% of tissue in control regions). There was no change in the proportion of tissue labelled with HIF1 alpha. There was no change in mRNA levels of the angiogenic factors VEGF and Flk-1, although a small increase in PDGF-R alpha expression at 116d GA, from 1.00 +/- 0.12 in control fetuses to 1.61 +/- 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. CONCLUSIONS: PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation

    Leukemia Inhibitory Factor in Rat Fetal Lung Development: Expression and Functional Studies

    Get PDF
    Background: Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are members of the family of the glycoprotein 130 (gp130)-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed. Methodology/Principal Findings: LIF and its subunit receptor LIFRa expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRa was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways

    Alterations in alveolar epithelium differentiation and vasculogenesis in lungs of LIF/IGF-I double deficient embryos

    No full text
    Previous studies on double deficient mice for leukemia inhibitory factor (LIF) and insulin-like growth factor I (IGF-I) reported that they died of respiratory failure, with abnormal lung histology and altered expression of pulmonary markers. Here we analyzed prenatal Lif/Igf-I double mutant mouse embryos to characterize LIF and IGF-I cooperative roles in distal lung epithelium and vascular maturation. Lungs of IGF-I-deficient embryos displayed a higher proportion of type II pneumocytes, less differentiated type I pneumocytes, and failure in alveolar capillary remodeling compared to wild type and LIF-deficient mice. Lif/Igf-I double knockout lungs showed aggravated pulmonary hypoplasia, lower airway volume, increased proliferation, and elevated levels of ERK1/2 activation. In addition, their alveoli were collapsed and lined by type II cells. The differentiation of type I cells barely occurred and capillaries remained in the abundant mesenchyme. These results indicate that LIF collaborates with IGF-I in lung alveolar epithelium and vascular maturation. © 2006 Wiley-Liss, Inc.This work was funded in part by grants BMC 2002-01680 (to J.G.P.) and BFU 2004-02352 (to F. de P.) from the Spanish Ministerio de Educación y Ciencia (MEC)Peer Reviewe

    Coherent tunnelling in Cu2+- and Ag2+-doped MgO and CaO: Cu2+ explored through ab initio calculations

    Get PDF
    The observation of coherent tunnelling in Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ was a crucial discovery in the realm of the Jahn-Teller (JT) effect. The main reasons favoring this dynamic behavior are now clarified through ab initio calculations on Cu2+ - and Ag2+ -doped cubic oxides. Small JT distortions and an unexpected low anharmonicity of the eg JT mode are behind energy barriers smaller than 25 cm-1 derived through CASPT2 calculations for Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ . The low anharmonicity is shown to come from a strong vibrational coupling of MO610- units (M=Cu,Ag) to the host lattice. The average distance between the d9 impurity and ligands is found to vary significantly on passing from MgO to SrO following to a good extent the lattice parameter

    Comparison of high order aberration after conventional and customized ablation in myopic LASIK in different eyes of the same patient

    No full text
    Purpose: To verify whether there exists any difference in higher order aberrations after undergoing myopic LASIK (laser in situ keratomileusis) with conventional ablation and customized ablation in different eyes of the same patient. Methods: This was a prospective randomized study of 54 myopic eyes (27 patients) that underwent LASIK using the Nidek EC-5000 excimer laser system (Nidek, Gamagori, Japan). Topography-guided customized aspheric treatment zone (CATz) was used in the first eye of the patient (study group) and the other eye of the same patient was operated on with conventional ablation (control group). Higher order aberrations [root-mean-square (RMS) in the 5-mm zone] of both groups were observed with the Nidek OPD-Scan aberrometer before and 3 months after LASIK. Preoperative mean refractive error was similar between two eyes of the same patient (t=−0.577, P>0.05). Results: Preoperatively, higher order aberrations (RMS in the 5-mm zone) in the CATz ablation and conventional groups were (0.3600±0.0341) µm and (0.2680±0.1421) µm, respectively. This difference was not statistically significant (t=1.292, P>0.05). Three months after LASIK, higher order aberrations (RMS in 5-mm zone) in the CATz ablation and conventional groups were (0.3627±0.1510) µm and (0.3991±0.1582) µm, respectively. No statistically significant difference was noted between pre- and postoperative higher order aberrations in the CATz group (t=−0.047, P>0.05). However, a statistically significant increase in higher order aberrations was observed after conventional ablation (t=−5.261, P<0.05). A statistically significant difference was noted in the increase of higher order aberrations after LASIK between groups (t=−2.050, P=0.045). Conclusion: LASIK with conventional ablation and topography-guided CATz ablation resulted in the same BSCVA (best spectacle-corrected visual acuity) 3 month after LASIK. Higher order aberrations were increased, but the increase of higher order aberrations after customized ablation treatment was less than that after conventional ablation
    corecore