800 research outputs found

    CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores

    Get PDF
    We present accurate photometric redshifts for galaxies observed by the Cluster Lensing And Supernova survey with Hubble (CLASH). CLASH observed 25 massive galaxy cluster cores with the Hubble Space Telescope in 16 filters spanning 0.2–1.7 μm. Photometry in such crowded fields is challenging. Compared to our previously released catalogues, we make several improvements to the photometry, including smaller apertures, intracluster light subtraction, point spread function matching and empirically measured uncertainties. We further improve the Bayesian photometric redshift estimates by adding a redder elliptical template and by inflating the photometric uncertainties of the brightest galaxies. The resulting photometric redshift accuracies are dz/(1+z) ∼ 0.8, 1.0 and 2.0 per cent for galaxies with I-band F814W AB magnitudes < 18, 20 and 23, respectively. These results are consistent with our expectations. They improve on our previously reported accuracies by a factor of 4 at the bright end and a factor of 2 at the faint end. Our new catalogue includes 1257 spectroscopic redshifts, including 382 confirmed cluster members. We also provide stellar mass estimates. Finally, we include lensing magnification estimates of background galaxies based on our public lens models. Our new catalogue of all 25 CLASH clusters is available via Mikulski Archive for Space Telescopes. The analysis techniques developed here will be useful in other surveys of crowded fields, including the Frontier Fields and surveys carried out with Javalambre-Physics of the Accelerated Universe Astrophysical Survey and James Webb Space Telescope

    Shear-melting of a hexagonal columnar crystal by proliferation of dislocations

    Full text link
    A hexagonal columnar crystal undergoes a shear-melting transition above a critical shear rate or stress. We combine the analysis of the shear-thinning regime below the melting with that of synchrotron X-ray scattering data under shear and propose the melting to be due to a proliferation of dislocations, whose density is determined by both techniques to vary as a power law of the shear rate with a 2/3 exponent, as expected for a creep model of crystalline solids. Moreover, our data suggest the existence under shear of a line hexatic phase, between the columnar crystal and the liquid phase

    The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3

    Get PDF
    We aim to investigate the galaxy environment in GAMA Galaxy Groups Catalogue (G3C) using a volume-limited galaxy sample from the Kilo Degree Survey Data Release 3. The k-Nearest Neighbour technique is adapted to take into account the probability density functions (PDFs) of photometric redshifts in our calculations. This algorithm was tested on simulated KiDS tiles, showing its capability of recovering the relation between galaxy colour, luminosity and local environment. The characterization of the galaxy environment in G3C groups shows systematically steeper density contrasts for more massive groups. The red galaxy fraction gradients in these groups is evident for most of group mass bins. The density contrast of red galaxies is systematically higher at group centers when compared to blue galaxy ones. In addition, distinct group center definitions are used to show that our results are insensitive to center definitions. These results confirm the galaxy evolution scenario which environmental mechanisms are responsible for a slow quenching process as galaxies fall into groups and clusters, resulting in a smooth observed colour gradients in galaxy systems.Comment: 14 pages, Accepted to MNRA

    Young Galaxy Candidates in the Hubble Frontier Fields - III. MACSJ0717.5+3745

    Get PDF
    In this paper we present the results of our search for and study of z≳6z \gtrsim 6 galaxy candidates behind the third Frontier Fields (FF) cluster, MACSJ0717.5+3745, and its parallel field, combining data from Hubble and Spitzer. We select 39 candidates using the Lyman Break technique, for which the clear non-detection in optical make the extreme mid-zz interlopers hypothesis unlikely. We also take benefit from z≳6z \gtrsim 6 samples selected using previous Frontier Fields datasets of Abell 2744 and MACS0416 to improve the constraints on the properties of very high-redshift objects. We compute the redshift and the physical properties, such emission lines properties, star formation rate, reddening, and stellar mass for all Frontier Fields objects from their spectral energy distribution using templates including nebular emission lines. We study the relationship between several physical properties and confirm the trend already observed in previous surveys for evolution of star formation rate with galaxy mass, and between the size and the UV luminosity of our candidates. The analysis of the evolution of the UV Luminosity Function with redshift seems more compatible with an evolution of density. Moreover, no robust z≥z\ge8.5 object is selected behind the cluster field, and few zz∼\sim9 candidates have been selected in the two previous datasets from this legacy survey, suggesting a strong evolution in the number density of galaxies between zz∼\sim8 and 9. Thanks to the use of the lensing cluster, we study the evolution of the star formation rate density produced by galaxies with L>>0.03L⋆^{\star}, and confirm the strong decrease observed between zz∼\sim8 and 9.Comment: 21 pages - Accepted for publication in ApJ - v2: small correction

    JPCam: A 1.2Gpixel camera for the J-PAS survey

    Full text link
    JPCam is a 14-CCD mosaic camera, using the new e2v 9k-by-9k 10microm-pixel 16-channel detectors, to be deployed on a dedicated 2.55m wide-field telescope at the OAJ (Observatorio Astrofisico de Javalambre) in Aragon, Spain. The camera is designed to perform a Baryon Acoustic Oscillations (BAO) survey of the northern sky. The J-PAS survey strategy will use 54 relatively narrow-band (~13.8nm) filters equi-spaced between 370 and 920nm plus 3 broad-band filters to achieve unprecedented photometric red-shift accuracies for faint galaxies over ~8000 square degrees of sky. The cryostat, detector mosaic and read electronics is being supplied by e2v under contract to J-PAS while the mechanical structure, housing the shutter and filter assembly, is being designed and constructed by a Brazilian consortium led by INPE (Instituto Nacional de Pesquisas Espaciais). Four sets of 14 filters are placed in the ambient environment, just above the dewar window but directly in line with the detectors, leading to a mosaic having ~10mm gaps between each CCD. The massive 500mm aperture shutter is expected to be supplied by the Argelander-Institut fur Astronomie, Bonn. We will present an overview of JPCam, from the filter configuration through to the CCD mosaic camera. A brief outline of the main J-PAS science projects will be included.Comment: 11 pages and 9 figure

    From Atiyah Classes to Homotopy Leibniz Algebras

    Full text link
    A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold XX makes TX[−1]T_X[-1] into a Lie algebra object in D+(X)D^+(X), the bounded below derived category of coherent sheaves on XX. Furthermore Kapranov proved that, for a K\"ahler manifold XX, the Dolbeault resolution Ω∙−1(TX1,0)\Omega^{\bullet-1}(T_X^{1,0}) of TX[−1]T_X[-1] is an L∞L_\infty algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L,A)(L,A), i.e. a Lie algebroid LL together with a Lie subalgebroid AA, we define the Atiyah class αE\alpha_E of an AA-module EE (relative to LL) as the obstruction to the existence of an AA-compatible LL-connection on EE. We prove that the Atiyah classes αL/A\alpha_{L/A} and αE\alpha_E respectively make L/A[−1]L/A[-1] and E[−1]E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category D+(A)D^+(\mathcal{A}), where A\mathcal{A} is the abelian category of left U(A)\mathcal{U}(A)-modules and U(A)\mathcal{U}(A) is the universal enveloping algebra of AA. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/AL/A and EE, and inducing the aforesaid Lie structures in D+(A)D^+(\mathcal{A}).Comment: 36 page

    A Nonrigid Registration Method for Correcting Brain Deformation Induced by Tumor Resection

    Get PDF
    Purpose: This paper presents a nonrigid registration method to align preoperative MRI with intraoperative MRI to compensate for brain deformation during tumor resection. This method extends traditional point-based nonrigid registration in two aspects: (1) allow the input data to be incomplete and (2) simulate the underlying deformation with a heterogeneous biomechanical model. Methods: The method formulates the registration as a three-variable (point correspondence, deformation field, and resection region) functional minimization problem, in which point correspondence is represented by a fuzzy assign matrix; Deformation field is represented by a piecewise linear function regularized by the strain energy of a heterogeneous biomechanical model; and resection region is represented by a maximal simply connected tetrahedral mesh. A nested expectation and maximization framework is developed to simultaneously resolve these three variables. Results: To evaluate this method, the authors conducted experiments on both synthetic data and clinical MRI data. The synthetic experiment confirmed their hypothesis that the removal of additional elements from the biomechanical model can improve the accuracy of the registration. The clinical MRI experiments on 25 patients showed that the proposed method outperforms the ITK implementation of a physics-based nonrigid registration method. The proposed method improves the accuracy by 2.88 mm on average when the error is measured by a robust Hausdorff distance metric on Canny edge points, and improves the accuracy by 1.56 mm on average when the error is measured by six anatomical points. Conclusions: The proposed method can effectively correct brain deformation induced by tumor resection. (C) 2014 American Association of Physicists in Medicine

    CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431

    Get PDF
    We present a quintuply lensed z ~ 6 candidate discovered in the field of the galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter. We perform a detailed photometric analysis to verify its high-z and lensed nature. We get as photometric redshift z_phot ~ 5.9, and given the extended nature and NIR colours of the lensed images, we rule out low-z early type and galactic star contaminants. We perform a strong lensing analysis of the cluster, using 13 families of multiple lensed images identified in the HST images. Our final best model predicts the high-z quintuply lensed system with a position accuracy of 0.8''. The magnifications of the five images are between 2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at z=6. We also estimate the UV slope from the observed NIR colours, finding a steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs to fit the photometry of the hiz candidate, and we conclude that it is a young (age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity (Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013, accepted on 23 Nov 201
    • …
    corecore