32 research outputs found
Raman spectra of nanodiamonds: New treatment procedure directed for improved raman signal marker detection
Detonation nanodiamonds (NDs) have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425-575°C) aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling. © 2013 Raoul R. Nigmatullin et al
Raman spectra of nanodiamonds: New treatment procedure directed for improved raman signal marker detection
Detonation nanodiamonds (NDs) have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425-575°C) aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling. © 2013 Raoul R. Nigmatullin et al
Raman spectra of nanodiamonds: New treatment procedure directed for improved raman signal marker detection
Detonation nanodiamonds (NDs) have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425-575°C) aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling. © 2013 Raoul R. Nigmatullin et al
Raman spectra of nanodiamonds: New treatment procedure directed for improved raman signal marker detection
Detonation nanodiamonds (NDs) have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425-575°C) aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling. © 2013 Raoul R. Nigmatullin et al
Electrospun scaffolds for tissue engineering of vascular grafts
Abstract not availableAnwarul Hasan, Adnan Memic, Nasim Annabi, Monowar Hossain, Arghya Paul, Mehmet R. Dokmeci, Fariba Dehghani, Ali Khademhossein
Parasympathetic neurons originate from nerve-associated peripheral glial progenitors
The peripheral autonomic nervous system reaches far throughout the body and includes neurons of diverse functions, such as sympathetic and parasympathetic. We show that the parasympathetic system in mice--including trunk ganglia and the cranial ciliary, pterygopalatine, lingual, submandibular, and otic ganglia--arise from glial cells in nerves, not neural crest cells. The parasympathetic fate is induced in nerve-associated Schwann cell precursors at distal peripheral sites. We used multicolor Cre-reporter lineage tracing to show that most of these neurons arise from bi-potent progenitors that generate both glia and neurons. This nerve origin places cellular elements for generating parasympathetic neurons in diverse tissues and organs, which may enable wiring of the developing parasympathetic nervous system
Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity
Carbon nanotubes (CNTs) represent one of the most studied allotropes of carbon. The unique physicochemical properties of CNTs make them among prime candidates for numerous applications in biomedical fields including drug delivery, gene therapy, biosensors, and tissue engineering applications. However, toxicity of CNTs has been a major concern for their use in biomedical applications. In this review, we present an overview of carbon nanotubes in biomedical applications; we particularly focus on various factors and mechanisms affecting their toxicity. We have discussed various parameters including the size, length, agglomeration, and impurities of CNTs that may cause oxidative stress, which is often the main mechanism of CNTs' toxicity. Other toxic pathways are also examined, and possible ways to overcome these challenges have been discussed. 2016 American Chemical Society.Scopu
Postnatal Sox6 Regulates Synaptic Function of Cortical Parvalbumin-Expressing Neurons
Cortical parvalbumin-expressing (Pvalb(+)) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb(+) neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb(+) neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb(+) neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb(+) neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb(+) neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb(+) neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb(+) neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb(+) neurons' synaptic output. Furthermore, Pvalb(+) neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb(+) neurons into adulthood