3,799 research outputs found

    On the equivalence between standard and sequentially ordered hidden Markov models

    Full text link
    Chopin (2007) introduced a sequentially ordered hidden Markov model, for which states are ordered according to their order of appearance, and claimed that such a model is a re-parametrisation of a standard Markov model. This note gives a formal proof that this equivalence holds in Bayesian terms, as both formulations generate equivalent posterior distributions, but does not hold in Frequentist terms, as both formulations generate incompatible likelihood functions. Perhaps surprisingly, this shows that Bayesian re-parametrisation and Frequentist re-parametrisation are not identical concepts

    Higher-order splitting algorithms for solving the nonlinear Schr\"odinger equation and their instabilities

    Get PDF
    Since the kinetic and the potential energy term of the real time nonlinear Schr\"odinger equation can each be solved exactly, the entire equation can be solved to any order via splitting algorithms. We verified the fourth-order convergence of some well known algorithms by solving the Gross-Pitaevskii equation numerically. All such splitting algorithms suffer from a latent numerical instability even when the total energy is very well conserved. A detail error analysis reveals that the noise, or elementary excitations of the nonlinear Schr\"odinger, obeys the Bogoliubov spectrum and the instability is due to the exponential growth of high wave number noises caused by the splitting process. For a continuum wave function, this instability is unavoidable no matter how small the time step. For a discrete wave function, the instability can be avoided only for \dt k_{max}^2{<\atop\sim}2 \pi, where kmax=π/Δxk_{max}=\pi/\Delta x.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Dimension-adaptive bounds on compressive FLD Classification

    Get PDF
    Efficient dimensionality reduction by random projections (RP) gains popularity, hence the learning guarantees achievable in RP spaces are of great interest. In finite dimensional setting, it has been shown for the compressive Fisher Linear Discriminant (FLD) classifier that forgood generalisation the required target dimension grows only as the log of the number of classes and is not adversely affected by the number of projected data points. However these bounds depend on the dimensionality d of the original data space. In this paper we give further guarantees that remove d from the bounds under certain conditions of regularity on the data density structure. In particular, if the data density does not fill the ambient space then the error of compressive FLD is independent of the ambient dimension and depends only on a notion of ‘intrinsic dimension'

    A note on the moduli-induced gravitino problem

    Full text link
    The cosmological moduli problem has been recently reconsidered. Papers [1,2] show that even heavy moduli (m_\phi > 10^5 GeV) can be a problem for cosmology if a branching ratio of the modulus into gravitini is large. In this paper, we discuss the tachyonic decay of moduli into the Standard Model's degrees of freedom, e.g. Higgs particles, as a resolution to the moduli-induced gravitino problem. Rough estimates on model dependent parameters set a lower bound on the allowed moduli at around 10^8 ~ 10^9 GeV.Comment: 6 pages, references added, identical to the published versio

    Hooke's law correlation in two-electron systems

    Full text link
    We study the properties of the Hooke's law correlation energy (\Ec), defined as the correlation energy when two electrons interact {\em via} a harmonic potential in a DD-dimensional space. More precisely, we investigate the 1S^1S ground state properties of two model systems: the Moshinsky atom (in which the electrons move in a quadratic potential) and the spherium model (in which they move on the surface of a sphere). A comparison with their Coulombic counterparts is made, which highlights the main differences of the \Ec in both the weakly and strongly correlated limits. Moreover, we show that the Schr\"odinger equation of the spherium model is exactly solvable for two values of the dimension (D=1and3D = 1 \text{and} 3), and that the exact wave function is based on Mathieu functions.Comment: 7 pages, 5 figure

    Public Authorities as Defendants: Using Bayesian Networks to determine the Likelihood of Success for Negligence claims in the wake of Oakden

    Get PDF
    Several countries are currently investigating issues of neglect, poor quality care and abuse in the aged care sector. In most cases it is the State who license and monitor aged care providers, which frequently introduces a serious conflict of interest because the State also operate many of the facilities where our most vulnerable peoples are cared for. Where issues are raised with the standard of care being provided, the State are seen by many as a deep-pockets defendant and become the target of high-value lawsuits. This paper draws on cases and circumstances from one jurisdiction based on the English legal tradition, Australia, and proposes a Bayesian solution capable of determining probability for success for citizen plaintiffs who bring negligence claims against a public authority defendant. Use of a Bayesian network trained on case audit data shows that even when the plaintiff case meets all requirements for a successful negligence litigation, success is not often assured. Only in around one-fifth of these cases does the plaintiff succeed against a public authority as defendant

    One-loop effective potential in M4 x T2 with and without 't Hooft flux

    Get PDF
    We review the basic notions of compactification in the presence of a background flux. In extra-dimentional models with more than five dimensions, Scherk and Schwarz boundary conditions have to satisfy 't Hooft consistency conditions. Different vacuum configurations can be obtained, depending whether trivial or non-trivial 't Hooft flux is considered. The presence of the "magnetic" background flux provide, in addition, a mechanism for producing four-dimensional chiral fermions. Particularizing to the six-dimensional case, we calculate the one-loop effective potential for a U(N) gauge theory on M4 x T2. We firstly review the well known results of the trivial 't Hooft flux case, where one-loop contributions produce the usual Hosotani dynamical symmetry breaking. Finally we applied our result for describing, for the first time, the one-loop contributions in the non-trivial 't Hooft flux case

    Quantum corrections from a path integral over reparametrizations

    Full text link
    We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson loops in the large-NN QCD and reproduces the area law in the classical limit of large loops. We show that a semiclassical expansion for a rectangular loop captures the L\"uscher term associated with d=26d=26 dimensions and propose a modification of the ansatz which reproduces the L\"uscher term in other dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse advocating the emergence of an analog of the L\"uscher term and verify this result by a direct computation of the determinant of the Laplace operator and the conformal anomaly

    Ultracold atoms confined in an optical lattice plus parabolic potential: a closed-form approach

    Full text link
    We discuss interacting and non-interacting one dimensional atomic systems trapped in an optical lattice plus a parabolic potential. We show that, in the tight-binding approximation, the non-interacting problem is exactly solvable in terms of Mathieu functions. We use the analytic solutions to study the collective oscillations of ideal bosonic and fermionic ensembles induced by small displacements of the parabolic potential. We treat the interacting boson problem by numerical diagonalization of the Bose-Hubbard Hamiltonian. From analysis of the dependence upon lattice depth of the low-energy excitation spectrum of the interacting system, we consider the problems of "fermionization" of a Bose gas, and the superfluid-Mott insulator transition. The spectrum of the noninteracting system turns out to provide a useful guide to understanding the collective oscillations of the interacting system, throughout a large and experimentally relevant parameter regime.Comment: 19 pages, 15 figures Minor modification were done and new references were adde

    Faraday waves in binary non-miscible Bose-Einstein condensates

    Get PDF
    We show by extensive numerical simulations and analytical variational calculations that elongated binary non-miscible Bose-Einstein condensates subject to periodic modulations of the radial confinement exhibit a Faraday instability similar to that seen in one-component condensates. Considering the hyperfine states of 87^{87}Rb condensates, we show that there are two experimentally relevant stationary state configurations: the one in which the components form a dark-bright symbiotic pair (the ground state of the system), and the one in which the components are segregated (first excited state). For each of these two configurations, we show numerically that far from resonances the Faraday waves excited in the two components are of similar periods, emerge simultaneously, and do not impact the dynamics of the bulk of the condensate. We derive analytically the period of the Faraday waves using a variational treatment of the coupled Gross-Pitaevskii equations combined with a Mathieu-type analysis for the selection mechanism of the excited waves. Finally, we show that for a modulation frequency close to twice that of the radial trapping, the emergent surface waves fade out in favor of a forceful collective mode that turns the two condensate components miscible.Comment: 13 pages, 10 figure
    • …
    corecore