Since the kinetic and the potential energy term of the real time nonlinear
Schr\"odinger equation can each be solved exactly, the entire equation can be
solved to any order via splitting algorithms. We verified the fourth-order
convergence of some well known algorithms by solving the Gross-Pitaevskii
equation numerically. All such splitting algorithms suffer from a latent
numerical instability even when the total energy is very well conserved. A
detail error analysis reveals that the noise, or elementary excitations of the
nonlinear Schr\"odinger, obeys the Bogoliubov spectrum and the instability is
due to the exponential growth of high wave number noises caused by the
splitting process. For a continuum wave function, this instability is
unavoidable no matter how small the time step. For a discrete wave function,
the instability can be avoided only for \dt k_{max}^2{<\atop\sim}2 \pi, where
kmax=π/Δx.Comment: 10 pages, 8 figures, submitted to Phys. Rev.