
Dimension-Adaptive Bounds on Compressive

FLD Classification

Ata Kabán and Robert J. Durrant

School of Computer Science, The University of Birmingham,
Birmingham, B15 2TT, UK

Abstract. Efficient dimensionality reduction by random projections (RP)
gains popularity, hence the learning guarantees achievable in RP spaces
are of great interest. In finite dimensional setting, it has been shown
for the compressive Fisher Linear Discriminant (FLD) classifier that for
good generalisation the required target dimension grows only as the log
of the number of classes and is not adversely affected by the number of
projected data points. However these bounds depend on the dimension-
ality d of the original data space. In this paper we give further guarantees
that remove d from the bounds under certain conditions of regularity on
the data density structure. In particular, if the data density does not
fill the ambient space then the error of compressive FLD is indepen-
dent of the ambient dimension and depends only on a notion of ‘intrinsic
dimension’.
Keywords: Random Projections, Compressed Learning, Intrinsic Dimen-
sion

1 Introduction and problem setting

A well known difficulty of machine learning in high dimensional data spaces
is that the algorithms tend to require computational resources that grow ex-
ponentially with the data dimension. This is often referred to as the curse of
dimensionality. Dimensionality reduction by random projections represents a
computationally efficient yet theoretically principled way to alleviate this prob-
lem, and a new theory of learning based on this idea was already initiated in
the work of [1]. Although the approach in [1] has some drawbacks, the idea to
characterise learning in randomly projected data spaces has much unexplored
potential.

More recent work in [5, 6] has analysed the performance of a compressive
Fisher Linear Discriminant (FLD) classifier under assumption of full-rank co-
variance estimates, and has shown that its error rate with plug-in estimates can
be upper-bounded in terms of quantities in the original data space, and the
compressed dimensionality required for good generalisation grows only as the
log of the number of classes. This result removed the number of projected points
from the bounds, which was the main drawback in early approaches [1, 13] that
relied on a global geometry preservation via the Johnson-Lindenstrauss lemma
– however, perhaps unsurprisingly, the new bounds in [5, 6] now depend on the
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dimensionality d of the original data space and the bounds get worse when d
gets large. It is natural to ask how essential is this dependence?

Most often the high dimensional data does not fill the whole data space but
exhibits some regularity. In such cases we would expect that learning should
be easier [9]. A good theory of learning should reflect this. As noted in [9], an
interesting question of great importance in itself is to identify algorithms whose
performance scales with the ‘intrinsic dimension’ rather than the ambient di-
mension. For dimensionality reduction, this problem received a great deal of
attention in e.g. subspace estimation and manifold learning [17, 10], but much
less is known about dimension-adaptive generalisation guarantees [9] for e.g.
classification or regression. Learning bounds for classification have mainly fo-
cused on data characteristics that hide dependence on the dimension, such as
the margin. For randomly projected generic linear classifiers, a bound of the
latter flavour has been recently given in [8]. In turn, here we seek guarantees
in terms of a notion of ‘intrinsic dimension’ of the data space, and for this we
focus on a specific classifier, the Fisher Linear Discriminant (FLD) working in a
random subspace, which allows us to conduct a richer level of analysis.

1.1 Problem setting

We consider supervised classification, given a training set TN = {(xi, yi)}N
i=1 of

N points where (xi, yi)
i.i.d∼ D some (usually unknown) distribution on Dom×C

with the input domain Dom being Rd (in Section 2) or ℓ2 more generally (in
Section 3) and yi ∈ C, where C is a finite set of labels – e.g. C = {0, 1} for 2-class
problems. For a given class of functions F , the goal of learning a classifier is
to learn from TN the function ĥ ∈ F with the lowest generalisation error in
terms of some loss function L. That is, find ĥ = arg min

h∈F
E(xq,yq)[L(h)], where

(xq, yq) ∼ D is a random query point with unknown label yq. We will use the
(0, 1)-loss, which is most appropriate for 2-class classification, so we can write

the generalisation error of a classifier ĥ : Dom → {0, 1} as

E(xq,yq)∼D[L(0,1)(ĥ(xq), yq)|TN ] = Pr(xq,yq)[ĥ(xq) 6= yq|TN ]

In this work the class of functions F will consist of Fisher Linear Discriminant
(FLD) classifiers. We are interested in FLD that has access only to a randomly
projected version of a fixed high dimensional training set, T R

N = {(Rxi, yi) :
Rxi ∈ R

k, (xi, yi) ∼ D} and we seek to bound the probability that a projected
query point Rxq is misclassified by the learnt classifier. This is referred to as the
Compressive FLD.

FLD and Compressive FLD FLD is a simple and popular linear classifier,
in widespread application. In its original form, the data classes are modelled as
identical multivariate Gaussians, and the class label of a query point is predicted
according to the smallest Mahalanobis distance from the class means. That is,
denoting by Σ̂ the empirical estimate of the pooled covariances and by µ̂0 and
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µ̂1 the class mean estimates, the decision function of FLD at a query point xq

is:

ĥ(xq) = 1

{

(µ̂1 − µ̂0)
T Σ̂−1

(

xq −
µ̂0 + µ̂1

2

)

> 0

}

where 1(A) is the indicator function that returns one if A is true and zero
otherwise. This can be derived from Bayes rule using the model of Gaussian

classes N (µ̂y, Σ̂) with equal weights.
Subjecting the data to a random projection (RP) means a linear transform

by a k×d matrix R with entries drawn i.i.d. from N (0, 1) (certain other random
matrices are possible too). Although R is not a projection in strict mathematical
sense, this terminology is widely established and it reflects the fact that the rows
of a random matrix with i.i.d. entries are nearly orthogonal and have nearly
equal lengths. The FLD estimated from a RP-ed training set will be denoted as

ĥR : R
k → {0, 1}, and this is:

ĥR(Rxq) = 1



(µ̂1 − µ̂0)
T RT (RΣ̂RT )−1R

„

xq − µ̂0 + µ̂1

2

«

> 0

ff

To facilitate analysis, the true distribution will also be assumed to consist of
Gaussian classes as in classical texts [15], although it is clear from previous
theoretical analyses [5, 6] that it is possible to relax this to the much wider class
of sub-Gaussians. The true class means and covariances of these class-conditional
densities will be denoted as µ0, µ1, Σ.

The generalisation error of ĥR, Pr(xq,yq)[ĥ
R(Rxq) 6= yq|TN , R], contains two

independent sources of randomness: the training set TN , and the random pro-
jection R. Here we are interested to study how this quantity depends on the di-
mensionality of the data, and find conditions under which it exhibits dimension-

adaptiveness. We start by writing the generalisation error of ĥR to isolate the
terms that affect its dependence on data dimension. We shall see that for a large
enough sample size (of only N > k + 2) dimension adaptiveness is a property
w.r.t. R, and it will be sufficient to study a simplified form of the error with the
training set being kept fixed. To see this, decompose the generalisation error as

in [7]: Pr(xq,yq)[ĥ
R(Rxq) 6= yq|TN , R] =

=
1
X

y=0

πyΦ

0

@−1

2

(µ¬y − µy)T RT (RΣ̂RT )−1R (µ¬y + µy − 2µy)
q

(µ̂1 − µ̂0)T RT (RΣ̂RT )−1RΣRT (RΣ̂RT )−1R(µ̂1 − µ̂0)

1

A

=
1
X

y=0

πyΦ (−[E1 · E2 − E3y]) (1)

where we used the Kantorovich and the Cauchy-Schwartz inequalities and de-
fined:

E1 = ‖(RΣRT )−
1

2 R (µ̂1 − µ̂0) ‖ (2)

E2 =

q

κ((RΣ̂RT )−
1

2 RΣRT (RΣ̂RT )−
1

2 )

1 + κ((RΣ̂RT )−
1

2 RΣRT (RΣ̂RT )−
1

2 )
(3)

E3y = ‖(RΣRT )−
1

2 R(µy − µ̂y)‖ (4)
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and κ denotes condition number.
Now observe that E2 and E3y are estimation error terms in the k-dimensional

projection space. Both of these can be bounded with high probability w.r.t. the
random draws of TN , for any instance of R, in terms of k and N0, N1 and
independent of R. Indeed, in the above1, the contributions of both E2 and E3y

vanish a.s. as N0 and N1 increase. In particular, for N > k + 2 the condition
number in E2 (as a function of TN ) is that of a Wishart Wk(N −2, Ik), which is
bounded w.h.p. [18] – even if N is not large enough for Σ̂ to be full rank. Hence,
these terms do not depend on the data dimension.

Furthermore, the norm of mean estimates that appears in E1 can be bounded
from that of the true means independent of the ambient dimension also, using
Lemma 1 in [7]. Therefore, to study the dimension-adaptiveness property of the
error of compressive FLD it is sufficient to analyse the simplified ‘estimated
error’ determined by E1 with TN fixed, which we will denote as:

P̂r(xq,yq)[ĥ
R(Rxq) 6= yq] = Φ

(

−1

2
E1

)

(5)

Alternatively, we may study the limit of this quantity as N0, N1 → ∞, which has
the same form but with µ̂y replaced by µy (which is perhaps more meaningful to
consider when we seek to show negative results by constructing lower bounds).
This coincides with the Bayes error for the case of shared true class covariance,
and will be denoted as Pr(xq,yq)[h

R(Rxq) 6= yq]. In the remainder of the paper we
analyse these simplified error terms. We should note of course that for a complete
non-asymptotic upper-bound on the generalisation error, the techniques in [7]
may be used to include the contributions of all terms.

2 Some straightforward results in special cases

It is natural to ask if the error of compressive FLD could be bounded inde-
pendently of the data dimension d. As we shall see shortly, without additional
assumptions the answer is no in general. However, for data that exhibits some
regularity in the sense that the data density does not fill the entire ambient
space then this will be indeed possible. This section looks at three relatively
straightforward cases for the sake of argument and insight.

2.1 Dependence on d cannot be eliminated in general

To start, we show that in general the dependence on d of the Compressed FLD
error is essential. Assume Σ is full rank. We upper and lower bound the Bayes
error to see that both bounds have the same dependence on d. First, notice that
putting the orthonormalised (RRT )−1/2R for R does not change eq.(1). Then

1 Here we assumed equal class-conditional true covariances for convenience, although
it is not substantially harder to allow these to differ while the model covariance Σ̂
is shared.



5

using Rayleigh quotient ([11], Thm 4.2.2. pp. 176), the Poincaré inequality ([11],
Corollary 4.3.16, pp. 190), and the Johnson-Lindenstrauss lemma [4] we get with
probability at least 1 − 2 exp(ǫ2/4) the following:

Pr(xq,yq)[h
R(Rxq) 6= yq] > Φ

(

−1

2

√

(1 + ǫ) · k · ‖µ0 − µ1)‖
√

d · λmin(Σ)

)

(6)

Pr(xq,yq)[h
R(Rxq) 6= yq] 6 Φ

(

−1

2

√

(1 − ǫ) · k · ‖µ0 − µ1)‖
√

d · λmax(Σ)

)

(7)

Thus, it appears that a dependence on d of the generalisation error is the price
to pay for not having required any ‘sparsity-like’ regularity of the data density.
Figure 1 presents an empirical check that confirms this conclusion. In the next
subsection we shall see a simple setting where such additional structure permits
a better generalisation guarantee.
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Fig. 1. Empirical error estimates of the compressive FLD as a function of the data
dimension when the data does fill the ambient space and the distance between class
centres stays constant. We see the error increases as we increase d. This confirms that
the dependence of the error on d cannot be removed in general.

2.2 Case when the data density lives in a linear subspace

Consider the 2-class FLD, and R ∈ R
k×d with entries from i.i.d. standard Gaus-

sian, as before, but now consider the case when the entire data density lives in
an s-dimensional linear subspace of the ambient space. We shall see, in this case
the error can be upper-bounded in terms of s replacing d. This is formalised in
the following result.
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Theorem 1. Let (xq, yq) ∼ D a query point with unknown label yq and Gaussian
class conditional densities xq|yq=y ∼ N (µy, Σ), and assume the distribution of
the input points lives in an s-dimensional linear subspace of the ambient space
R

d. That is: rank(Σ) = s < d, and ∃v ∈ R
d, v 6= 0 s.t. µ0 = µ1 + Σv. Let

R ∈ Mk×d be a random projection matrix with entries drawn i.i.d from N (0, 1),
with projection dimension k 6 s (which is the case of interest for compression).
Then, with probability at least 1 − exp(−kǫ2/4) over the random choice of R,
∀ǫ ∈ (0, 1), we have the following:

P̂r(xq,yq)[ĥ
R(Rxq) 6= yq] 6 Φ

(

−1

2

√
1 − ǫ√

s

√
k · ‖µ̂0 − µ̂1‖
√

λmax(Σ)

)

Proof. By the low rank precondition, Σ equals its rank-s SVD decompo-
sition, so we write Σ = PSPT , where S ∈ R

s×s is full-rank diagonal and
P ∈ R

d×s, PT P = I. Replacing this into eq. (5) gives:

P̂r(xq,yq)[ĥ
R(Rxq) 6= yq] = Φ

(

−1

2

√

(µ̂0 − µ̂1)T RT [RPSPT RT ]−1R(µ̂0 − µ̂1)

)

(8)
Next, observe that by construction PT (µ̂0 − µ̂1) = µ̂0 − µ̂1 (since µ0 − µ1 ∈
Range(Σ)) and so µ̂0 − µ̂1 ∈ Range(Σ) also).

Using these and denoting R̄ = RP ,

(µ̂0 − µ̂1)
T RT (RΣRT )−1R(µ̂0 − µ̂1) (9)

has the same distribution as:

(µ̂0 − µ̂1)
T PR̄T (R̄SR̄T )−1R̄PT (µ̂0 − µ̂1) (10)

where, by the rotation-invariance of Gaussians, R̄ is a k× s random matrix with
i.i.d. standard normal entries.

Now, let R̄o = (R̄R̄T )−1/2R̄. We can equivalently rewrite eq.(10), and then
bound it as the following:

= (µ̂0 − µ̂1)
T PR̄T

o (R̄oSR̄T
o )−1R̄oP

T (µ̂0 − µ̂1)

>
‖R̄oP

T (µ̂0 − µ̂1)‖2

λmax(R̄oSR̄o)
>

‖R̄oP
T (µ̂0 − µ̂1)‖2

λmax(S)
(11)

=
‖R̄oP

T (µ̂0 − µ̂1)‖2

λmax(Σ)
(12)

where in the last two steps we used minorisation by Rayleigh quotient and
the Poincaré inequality respectively — note that the latter requires Ro to be
orthonormal.

Finally, we bound eq. (12) by Johnson-Lindenstrauss lemma [4], so ‖R̄o(P
T µ̂0−

PT µ̂1)‖2 > (1− ǫ) · k/s · ‖PT µ̂0 − PT µ̂1‖2 w.p. 1− exp(−kǫ2/4), and use again
that ‖PT µ̂0 − PT µ̂1‖2 = ‖µ̂0 − µ̂1‖2 to conclude the proof. ¤

Figure 2 presents an illustration and empirical validation of the findings of
Theorem 1 employing synthetic data with two 5-separated Gaussian classes that
live in s < d = 100 dimensions.
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Fig. 2. Empirical performance when data density lives in a subspace. Left : When the
data lives in a fixed subspace, then increasing the ambient dimension leaves the error
constant. Right : With fixed ambient dimension (d = 100), a smaller dimension of the
subspace where the data density lives implies a lower misclassification error rate of
RP-FLD.

2.3 Noisy subspace

Now consider the case when the data density lives ‘mostly’ on a subspace up to
some additive noise. We can show in this case that again the error may depend
on d in general. To see this let us take Σ = PSPT +σ2I where S is an s× s full
rank matrix embedded by P in the ambient space R

d. We have:

Pr(xq,yq)[h
R(Rxq) 6= yq] = Φ

(

−1

2

√

(µ̂1 − µ̂0)T RT [R(Σ + σ2I)RT ]−1R(µ̂1 − µ̂0)

)

and we lower and upper bound this.
Using Johnson-Lindenstrauss [4] and the Weyl’s inequality, this can be lower-

bounded as:

> Φ

(

−1

2

√

k(1 + ǫ)‖µ1 − µ0‖2

λmin(RPT SPRT ) + σ2λmin(RRT )

)

> Φ

(

−1

2

√

k(1 + ǫ)‖µ1 − µ0‖2

λmin(S)(
√

s −
√

k − ν)2 + σ2(
√

d −
√

k − ν)2

)

w.p. 1 − exp(−kǫ2/4) − 2 exp(−ν2/2), ∀ν > 0,∀ǫ ∈ (0, 1). In the last step we
used Eq. (2.3) in [18] that lower-bounds the smallest singular value of a Gaussian
random matrix.

Likewise, the same can be also upper-bounded using similar steps and the
corresponding bound on the largest singular values [18], yielding:

Pr(xq,yq)[h
R(Rxq) 6= yq] 6 Φ

 

−1

2

s

k(1 − ǫ)‖µ1 − µ0‖2

λmax(S)(
√

s +
√

k + ν)2 + σ2(
√

d +
√

k + ν)2

!
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w.p. 1 − exp(−kǫ2/4) − 2 exp(−ν2/2), ∀ν > 0,∀ǫ ∈ (0, 1).

We see that both bounds depend on d at the same rate. So again, such a
bound becomes less useful when d is very large unless either the separation of
means ‖µ1 − µ0‖ grows with d at least as σ

√
d, or the noise variance σ2 shrinks

as 1/d. In the next section we consider data spaces that are separable Hilbert
spaces (so ‖µ1−µ0‖ is finite whereas d can be infinite) equipped with a Gaussian
measure, and we give conditions that ensure that the error remains bounded.

3 Main result: A Bound on Compressive Functional FLD

In this section the data space is a separable Hilbert space of possibly infinite
dimension, here taken to be ℓ2, equipped with Gaussian probability measure over
Borel sets [14, 2], and we require that the covariance operator is trace class – i.e.
its trace must be finite. As we shall see, this requirement ensures that the error
of Compressive FLD can be bounded independent of the ambient dimension.

Definition [18]. The effective rank of Σ is defined as r(Σ) = Tr(Σ)
λmax(Σ) .

The following main result provides a bound on the error of functional FLD
that operates in a random k-dimensional subspace of the data space ℓ2. This
bound is in terms of the effective rank of Σ, which may be thought of as a
notion of the intrinsic dimension of the data. The case of interest for compression
is when k is small, and we will assume that k 6 C ·r(Σ) for some constant C > 0
– as an analogue to the case k 6 d typically taken in finite d settings.

Theorem 2. Let (xq, yq) ∼ D a query point with unknown label yq and Gaus-
sian class conditionals xq|yq=y ∼ N (µy, Σ), where Σ is a trace-class covariance
(i.e. Tr(Σy) < ∞); let πy = Pr(yq = y), and let m be the number of classes.
Let (R1,i)i>1, · · · (Rk,i)i>1 be k infinite sequences of i.i.d. standard normal vari-
ables, and denote by R the matrix whose rows are these sequences. For random
projections from H onto R

k with k with k 6 C · r(Σ) for some positive constant

C, we have that, ∀ǫ ∈ (0, 1), ∀η ∈
(

0,

√
k/r(Σ)

1+2
√

log 5·
√

C

]

, the error is bounded as the

following:
a) In 2-class case (m = 2), we have:

P̂r(xq,yq)[ĥ
R(Rxq) 6= yq] 6 Φ

0

@−1

2

p

(1 − ǫ)k‖µ̂0 − µ̂1‖
p

Tr(Σ)
“

1 + 4
p

C log(1 + 2/η)
”

1

A (13)

with probability at least 1 − (exp(−kǫ2/4) + exp(−k log(1 + 2/η)).
b) In multi-class case (m > 2), we have:

P̂r(xq,yq)[ĥ
R(Rxq) 6= yq] 6

m−1
X

y=0

πy

m−1
X

i6=y

Φ

0

@−1

2

p

(1 − ǫ)k‖µ̂y − µ̂i‖
p

Tr(Σ)
“

1 + 4
p

C log(1 + 2/η)
”

1

A (14)

with probability at least 1 − (m(m−1)
2 exp(−kǫ2/4) + exp(−k log(1 + 2/η)).
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Now, looking at eq. (13) of Theorem 2 and its finite dimensional analogue in
Theorem 1 (in the case of shared Σ) comparatively, we see the essential difference

is that s is now replaced by r(Σ)
(

1 + 4
√

C log(1 + 2/η)
)

, i.e. a small multiple

of our notion of intrinsic dimension in ℓ2.
The proof will make use of covering arguments. It is likely that the logarith-

mic factor log(1 + 2/η) could be removed with the use of more sophisticated
proof techniques, however we have not pursued this here. Section 3.2 will give
the details of the proof of Theorem 2.

An important consequence of this result is that despite the infinite dimen-
sional data space, the order of the required dimensionality of the random sub-
space is surprisingly low – this is discussed in the next subsection.

3.1 Dimension of the compressive space

The projection dimension k required for good generalisation may be thought
of as a measure of the difficulty of the task. It is desirable for a theory of
learning to provide guarantees that reflect this. Early attempts to create RP
learning bounds based on the strong global guarantees offered by the Johnson-
Lindenstrauss lemma, e.g. [1] fell short of this aim and yielded a dependence of
the order k = O(log N) – where N is the number of training points that get
randomly projected. A sharp improvement, under full covariance assumptions
in fixed finite dimensions, [5] has shown that k only needs to be of the order
O(log m) for good classification guarantees, and this matches earlier results for
unsupervised learning of a mixture of Gaussians [3].

However, because the ambient dimension d was a constant in these works,
the previous bounds are not directly applicable when d is allowed to be infinity.
In turn, we can now obtain as a consequence of Theorem 2 that under its condi-
tions the required projection dimension for m-class classification is still O(log m)
independently of d:

Corollary 1. With the notations and preconditions of Theorem 2, in order that
the probability of misclassification for an m-class problem in the projected space
remains below any given δ it is sufficient to take:

k = O(log m)

Proof. The r.h.s. of part b) in Theorem 2 can be upper-bounded using Eq
(13.48) of [12] for Φ(·):

6
1

2

m−1
∑

y=0

πy

m−1
∑

i=1;i6=y

exp






−1

8

(1 − ǫ)k‖µ̂y − µ̂i‖2

Tr(Σ)
(

1 + 4
√

C log(1 + 2/η)
)2







Setting this to some δ ∈ (0, 1) gives:

log

(

m − 1

2δ

)

6
1

8

(1 − ǫ) · k · mini,j=1,...,m;i6=j ‖µ̂i − µ̂j‖2

Tr(Σ)
(

1 + 4
√

C log(1 + 2/η)
)2
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where we used that
∑m−1

y=0 πy = 1. Solving for k we obtain

k > 8 · Tr(Σ)(1 + 4
√

C log(1 + 2/η))2

(1 − ǫ)mini,j=0,...,m−1,i 6=j ‖µ̂i − µ̂j‖2
· log

(

m − 1

2δ

)

(15)

= O(log m)

Finally, for k = O(log m) it is easy to see that the probability with which the
bound holds in Theorem 2 part b) can be made arbitrarily small. ¤

Comparing the bound in eq. (15) with Corollary 4.10 in [5], we see that
d·λmax(Σ) is now replaced by Tr(Σ)(1+4

√

C log(1 + 2/η))2 and may indeed be
interpreted as the ‘diameter’ of the data that now depends only on the intrinsic
dimension, while mini6=j ‖µi − µj‖ in the bound remains an analogue of the
‘margin’.

Application One context in which functional data spaces are of interest is
kernel methods. By way of demonstration, we conduct experiments with kernel-
FLD (KFLD) restricted to a random k-dimensional subspace of the feature space.
This is equivalent with a random compression of the gram matrix. Our bound
in Theorem 2 applies to this case too, since the orthogonal projection of Σ
into the span of the training points (i.e. the feature space) can only decrease
the trace. We use 13 UCI benchmark datasets from [16], together with their
experimental protocol. These data are: diabetes (N=468), ringnorm (N=400),
waveform (N=400), flare solar (N=666), german (N=700), thyroid (N=140),
heart (N=170), titanic (N=150), breast cancer (N=200), twonorm (N=400),
banana (N=400), image (1300), splice (N=1000). Figure 3 summarises the results
obtained for various choices of k and we see indeed that small values of k already
produce results that are comparable to the full KFLD.

3.2 Proof of Theorem 2

The main ingredient of the proof is a bound on the largest eigenvalue of the pro-
jected covariance operator RΣRT , which is a corollary of the following theorem.

Theorem 3. Let Σ a covariance operator s.t. Tr(Σ) < ∞ in a Gaussian Hilbert
space H (assumed w.l.o.g. to be infinite dimensional), and let (R1,i)i>1, · · · (Rk,i)i>1

be k sequences of i.i.d. standard normal variables. Then, ∀η ∈ (0, 1), we have
with probability at least 1 − exp(−k log(1 + 2/η)):

λmax(RΣRT ) 6
Tr(Σ)

(1 − η)2

(

1 + 2

√

k · λmax(Σ)

Tr(Σ)
log(1 + 2/η)

)2

(16)

Proof of Theorem 3. Let us denote the unit sphere in R
k by Sk−1. We use

the covering technique on the sphere in three steps as follows.
Step 1 [Concentration] Let w ∈ Sk−1 fixed. Then, ∀ǫ > 0,

‖Σ1/2RT w‖2

Tr(Σ)
6 1 + ǫ (17)
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Fig. 3. Performance of randomly projected kernel-FLD classifiers on 13 UCI data sets.

with probability 1 − δ(ǫ), where δ(ǫ) = exp
(

− Tr(Σ)
2λmax(Σ) (

√
1 + ǫ − 1)2

)

. This

can be proved with elementary techniques using the Laplace transform and the
moment-generating function of a central χ2 in ℓ2 [14]; it also follows as a special
case from the first part of Lemma 1 in [7] (where it was used for a different
purpose).

Step 2 [Covering] Let N be an η-net over Sk−1 with η ∈ (0, 1). Define

t :=
4k · λmax(Σ)

Tr(Σ)
log(1 + 2/η) (18)

Then, with probability 1 − exp(−k log(1 + 2/η)), we have uniformly ∀w ∈ N
that:

‖Σ1/2RT w‖2

Tr(Σ)
6 (1 +

√
t)2 (19)

Proof of step 2. The size of an η-net is bounded as |N | 6 (1 + 2/η)k [18].
Applying eq.(17) from Step 1, and taking union bound over the points in N we
have with probability 1 − (1 + 2/η)kδ(ǫ) that, ∀ǫ > 0,

‖Σ1/2RT w‖2

Tr(Σ)
6 1 + ǫ (20)

We can make this probability large by an appropriate choice of ǫ. In particular,
imposing (1 + 2/η)kδ(ǫ) = δ1/2(ǫ), i.e.

(1 + 2/η)k exp

(

− Tr(Σ)

2λmax(Σ)
(
√

1 + ǫ − 1)2
)

= exp

(

− Tr(Σ)

4λmax(Σ)
(
√

1 + ǫ − 1)2
)
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and solving this for ǫ gives:

1 + ǫ = (1 +
√

t)2 (21)

where t has been defined in eq.(18).
Finally, replacing this into eq.(20) and in δ(ǫ) yields the statement of eq.(19)

with probability 1 − δ1/2(ǫ) = 1 − exp(k log(1 + 2/η)) as required. ¤

Step 3 [Approximation] Let r be as in Step 2, and assume t ∈ (0, 1). Then,
uniformly over ∀w ∈ Sk−1, we have:

smax(Σ
1/2RT )

√

Tr(Σ)
6

1

1 − η
(1 +

√
t) (22)

with probability 1 − exp(−k log(1 + 2/η)).
Proof of step 3. Let v ∈ N s.t. ‖w − v‖ ≤ η. We have:

‖Σ1/2RT w‖
√

Tr(Σ)
− 1 =

‖Σ1/2RT w‖ − ‖Σ1/2RT v‖
√

Tr(Σ)
+

‖Σ1/2RT v‖
√

Tr(Σ)
− 1 (23)

6
∣

∣

‖Σ1/2RT w − Σ1/2RT v‖
√

Tr(Σ)

∣

∣ +
‖Σ1/2RT v‖
√

Tr(Σ)
− 1 (24)

6
‖Σ1/2RT ‖‖w − v‖

√

Tr(Σ)
+

‖Σ1/2RT v‖
√

Tr(Σ)
− 1 (25)

6
‖Σ1/2RT ‖
√

Tr(Σ)
η +

√
t (26)

where eq. (24) follows from the reverse triangle inequality, eq.(25) uses Cauchy-
Schwartz, and eq.(26) follows by applying eq.(20) of Step 2 to the second term
in eq.(25).

Note that ‖Σ1/2RT ‖ is the largest singular value of Σ1/2RT , and will be
referred to as smax(Σ

1/2RT ).
Since eq.(26) holds uniformly ∀w ∈ Sk−1, it also holds for w := arg max

w∈Sk−1

‖Σ1/2RT u‖,

i.e. the w for which ‖Σ1/2RT u‖ achieves smax(Σ
1/2RT ). Using this, the r.h.s.

inequality implies that:

smax(Σ
1/2RT )

√

Tr(Σ)
− 1 6

smax(Σ
1/2RT )

√

Tr(Σ)
η +

√
t (27)

hence
smax(Σ

1/2RT )
√

Tr(Σ)
6

1

1 − η
(1 +

√
t) (28)

Rearranging, gives the statement of the theorem. ¤

Corollary 2. With the notations and assumptions of Theorem 3, denote the

effective rank of Σ by r(Σ) := Tr(Σ)
λmax(Σ) . Assume that k

r(Σ) is bounded above
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by some positive constant C > 0. Then, ∀η ∈
(

0,

√
k/r(Σ)

1+2
√

log 5·
√

C

]

, we have with

probability at least 1 − exp(−k log(1 + 2/η)):

λmax(RΣRT ) 6 Tr(Σ)
(

1 + 4
√

C log(1 + 2/η)
)2

Proof of Corollary 2. First, we apply Theorem 3 to smax(Σ
1/2RT ) with

the choice η = 1/2:

smax(Σ
1/2RT ) =

√

λmax(RΣRT ) 6 2
√

Tr(Σ)

(

1 + 2

√

k · λmax(Σ)

Tr(Σ)
log 5

)

6 2
√

Tr(Σ)
(

1 + 2
√

C log 5
)

(29)

Replacing this into eq. (26) we get:

‖Σ1/2RT w‖
√

Tr(Σ)
− 1 6

‖Σ1/2RT ‖
√

Tr(Σ)
η +

√
t 6 2

(

1 + 2
√

C log 5
)

η +
√

t

6 2
(

1 + 2
√

C log 5
)

η + 2

√

k

r(Σ)
log(1 + 2/η) (30)

where in the last line we used the definition of t given in eq.(18).

Now, choose 0 < η 6

√
k/r(Σ)

1+2
√

C log 5
. This choice is valid, since it satisfies that√

k/r(Σ)

1+2
√

C log 5
6 1 due to our precondition that k

r(Σ) 6 C.

With this choice, then the first term on the r.h.s. of eq.(30) becomes bounded
as:

2
(

1 + 2
√

C log 5
)

η 6 2

√

k

r(Σ)
(31)

This is smaller than the second term, 2
√

k
r(Σ) log(1 + 2/η), since η 6 1 (and so

log(1 + 2/η) ≥ log 3 ≥ 1). Therefore in eq.(30) the second term dominates, and
hence we can bound eq. (30) further by:

2

√

k

r(Σ)
+ 2

√

k

r(Σ)
log(1 + 2/η) 6 4

√

k

r(Σ)
log(1 + 2/η) (32)

Summing up, we have uniformly ∀u ∈ N that:

‖Σ1/2RT w‖
√

Tr(Σ)
− 1 6 4

√

k

r(Σ)
log(1 + 2/η) (33)

It follows that:

λmax(RSRT ) 6 Tr(Σ)

(

1 + 4

√

k

r(Σ)
log(1 + 2/η)

)2

(34)



14

and using that k 6 C · r(Σ) concludes the proof. ¤

Proof of Theorem 2 We bound the error in the k-dimensional projection
space, using Rayleigh quotient:

P̂r(xq,yq)[ĥ
R(Rxq) 6= yq] = Φ

(

−1

2

√

(µ̂1 − µ̂0)T RT [RΣRT ]−1R(µ̂1 − µ̂0)

)

6 Φ

(

−1

2

‖R(µ̂1 − µ̂0)‖
√

λmax(RΣRT )

)

where we used that π0 + π1 = 1.
Now, applying Corollary 2 to the denominator, and applying the Hilbert-

space version of Johnson-Lindenstrauss lemma [2] to the norm in the numerator
completes the proof of claim a).

Finally, b) is obtained simply by applying union bound over the m−1 different
ways that misclassification can occur, and the m(m−1)/2 distances between the
m class centres. ¤

4 Conclusions

We have shown that Compressive FLD exhibits a dimension-adaptive property
with respect to the random projection. We restricted ourselves to the analysis
of the main term of the error in order focus on this property and we have
shown that if the data density does not fill the ambient space then the error
of compressive FLD can be bounded independently of the ambient dimension,
with an expression that depends on a notion of ‘intrinsic dimension’ instead. In
the case of data that lives in a linear subspace the intrinsic dimension is the
dimension of that subspace. More generally, in the case of data whose class-
conditional density has a trace-class covariance operator, the placeholder of the
intrinsic dimension in our bound is the effective rank of the class covariance.

Due to the nice properties of random projections, and to many recent ad-
vances in this area, future work is aimed to derive learning guarantees that
depend on some notions of complexity of the data geometry so that structural
regularities that make learning easier should be reflected in better learning guar-
antees. As a by-product, learning in the randomly projected data space when
the data density has regularities also leads to more efficient algorithms since the
smaller the projected dimension is allowed to be the less computation time will
be required.
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