419 research outputs found
The Influence of Magnetic Field on Oscillations in the Solar Chromosphere
Two sequences of solar images obtained by the Transition Region and Coronal
Explorer in three UV passbands are studied using wavelet and Fourier analysis
and compared to the photospheric magnetic flux measured by the Michelson
Doppler Interferometer on the Solar Heliospheric Observatory to study wave
behaviour in differing magnetic environments. Wavelet periods show deviations
from the theoretical cutoff value and are interpreted in terms of inclined
fields. The variation of wave speeds indicates that a transition from dominant
fast-magnetoacoustic waves to slow modes is observed when moving from network
into plage and umbrae. This implies preferential transmission of slow modes
into the upper atmosphere, where they may lead to heating or be detected in
coronal loops and plumes.Comment: 8 pages, 6 figures (4 colour online only), accepted for publication
in The Astrophysical Journa
Ca II H and K Chromospheric Emission Lines in Late K and M Dwarfs
We have measured the profiles of the Ca II H and K chromospheric emission
lines in 147 main sequence stars of spectral type M5-K7 (0.30-0.55 solar
masses) using multiple high resolution spectra obtained during six years with
the HIRES spectrometer on the Keck 1 telescope. Remarkably, the average FWHM,
equivalent widths, and line luminosities of Ca II H and K increase by a factor
of 3 with increasing stellar mass over this small range of stellar masses. We
fit the H and K lines with a double Gaussian model to represent both the
chromospheric emission and the non-LTE central absorption. Most of the sample
stars display a central absorption that is typically redshifted by ~0.1 km/s
relative to the emission, but the nature of this velocity gradient remains
unknown. The FWHM of the H and K lines increase with stellar luminosity,
reminiscent of the Wilson-Bappu effect in FGK-type stars. Both the equivalent
widths and FWHM exhibit modest temporal variability in individual stars. At a
given value of M_v, stars exhibit a spread in both the equivalent width and
FWHM of Ca II H and K, due both to a spread in fundamental stellar parameters
including rotation rate, age, and possibly metallicity, and to the spread in
stellar mass at a given M_v. The K line is consistently wider than the H line,
as expected, and its central absorption is more redshifted, indicating that the
H and K lines form at slightly different heights in the chromosphere where the
velocities are slightly different. The equivalent width of H-alpha correlates
with Ca II H and K only for stars having Ca II equivalent widths above ~2
angstroms, suggesting the existence of a magnetic threshold above which the
lower and upper chromospheres become thermally coupled.Comment: 40 pages including 12 figures and 17 pages of tables, accepted for
publication in PAS
A New Multiple Stellar System in the Solar Neighborhood
Adaptive optics corrected images obtained with the CIAO instrument at the
Subaru 8.2-meter telescope show the presence of two subarsecond companions to
the nearby (d=19.3 pc) young star GJ 900, which was previously classified as a
single member of the IC 2391 supercluster. The two companions share the same
proper motion as the primary and are redder. Their projected separations from
the primary are 10 AU and 14.5 AU for B and C, respectively. The estimated
masses for the two new companions depend strongly on the age of the system. For
the range of ages found in the literature for IC 2391 supercluster members
(from 35 Myr to 200 Myr), the expected masses range from 0.2 M to 0.4
M for the B component, and from 0.09 M to 0.22 M for
the C component. The determination of the dynamical mass of the faintest
component of GJ 900 will yield the age of the system using theoretical
evolutionary tracks. The apparent separations of the GJ 900 system components
meet the observational criterion for an unstable Trapezium-type system, but
this could be a projection effect. Further observations are needed to establish
the nature of this interesting low-mass multiple system.Comment: Scheduled for publication in the Astronomical Journal (August 2003
Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop
We propose a new model for quasi-periodic modulation of solar and stellar flaring emission. Fast magnetoacoustic oscillations of a non-flaring loop can interact with a nearby flaring active region. This interaction occurs when part of the oscillation situated outside the loop reaches the regions of steep gradients in magnetic field within an active region and produces periodic variations of electric
current density. The modulation depth of these variations is a few orders of magnitude greater than the amplitude of the driving oscillation. The variations of the current can induce current-driven plasma micro-instabilities and thus anomalous resistivity. This can periodically trigger magnetic reconnection, and hence acceleration of charged particles, producing quasi-periodic pulsations of X-ray,
optical and radio emission at the arcade footpoints
Fostering collective intelligence education
New educational models are necessary to update learning environments to the digitally shared communication and information. Collective intelligence is an emerging field that already has a significant impact in many areas and will have great implications in education, not only from the side of new methodologies but also as a challenge for education. This paper proposes an approach to a collective intelligence model of teaching using Internet to combine two strategies: idea management and real time assessment in the class. A digital tool named Fabricius has been created supporting these two elements to foster the collaboration and engagement of students in the learning process. As a result of the research we propose a list of KPI trying to measure individual and collective performance. We are conscious that this is just a first approach to define which aspects of a class following a course can be qualified and quantified.Postprint (published version
Energetics and stability of nanostructured amorphous carbon
Monte Carlo simulations, supplemented by ab initio calculations, shed light
into the energetics and thermodynamic stability of nanostructured amorphous
carbon. The interaction of the embedded nanocrystals with the host amorphous
matrix is shown to determine in a large degree the stability and the relative
energy differences among carbon phases. Diamonds are stable structures in
matrices with sp^3 fraction over 60%. Schwarzites are stable in low-coordinated
networks. Other sp^2-bonded structures are metastable.Comment: 11 pages, 7 figure
The Active Corona of HD 35850 (F8 V)
We present Extreme Ultraviolet Explorer spectroscopy and photometry of the
nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines
from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper
limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW
spectrum shows a small but clearly detectable continuum. The line-to-continuum
ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting
emission-measure distribution is characterized by two temperature components at
log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous
ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature
distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest
sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be
the result of incomplete X-ray line lists, we cannot explain the disagreement
between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance.
Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its
high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity
extremum for single, main-sequence F-type stars. The variability and EM
distribution can be reconstructed using the continuous flaring model of Guedel
provided that the flare distribution has a power-law index of 1.8. Similar
results obtained for other young solar analogs suggest that continuous flaring
is a viable coronal heating mechanism on rapidly rotating, late-type,
main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April
10 issue of The Astrophysical Journa
Constraints on Extrasolar Planet Populations from VLT NACO/SDI and MMT SDI and Direct Adaptive Optics Imaging Surveys: Giant Planets are Rare at Large Separations
We examine the implications for the distribution of extrasolar planets based
on the null results from two of the largest direct imaging surveys published to
date. Combining the measured contrast curves from 22 of the stars observed with
the VLT NACO adaptive optics system by Masciadri et al. (2005), and 48 of the
stars observed with the VLT NACO SDI and MMT SDI devices by Biller et al.
(2007) (for a total of 60 unique stars; the median star for our survey is a 30
Myr K2 star at 25 pc), we consider what distributions of planet masses and
semi-major axes can be ruled out by these data, based on Monte Carlo
simulations of planet populations. We can set this upper limit with 95%
confidence: the fraction of stars with planets with semi-major axis from 20 to
100 AU, and mass >4 M_Jup, is 20% or less. Also, with a distribution of planet
mass of dN/dM ~ M^-1.16 between 0.5-13 M_Jup, we can rule out a power-law
distribution for semi-major axis (dN/da ~ a^alpha) with index 0 and upper
cut-off of 18 AU, and index -0.5 with an upper cut-off of 48 AU. For the
distribution suggested by Cumming et al. (2007), a power-law of index -0.61, we
can place an upper limit of 75 AU on the semi-major axis distribution. At the
68% confidence level, these upper limits state that fewer than 8% of stars have
a planet of mass >4 M_Jup between 20 and 100 AU, and a power-law distribution
for semi-major axis with index 0, -0.5, and -0.61 cannot have giant planets
beyond 12, 23, and 29 AU, respectively. In general, we find that even null
results from direct imaging surveys are very powerful in constraining the
distributions of giant planets (0.5-13 M_Jup) at large separations, but more
work needs to be done to close the gap between planets that can be detected by
direct imaging, and those to which the radial velocity method is sensitive.Comment: 46 pages, 17 figures, accepted to Ap
An Infrared Coronagraphic Survey for Substellar Companions
We have used the F160W filter (1.4-1.8 um) and the coronagraph on the
Near-InfraRed Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space
Telescope (HST) to survey 45 single stars with a median age of 0.15 Gyr, an
average distance of 30 pc, and an average H-magnitude of 7 mag. For the median
age we were capable of detecting a 30 M_Jup companion at separations between 15
and 200 AU. A 5 M_Jup object could have been detected at 30 AU around 36% of
our primaries. For several of our targets that were less than 30 Myr old, the
lower mass limit was as low as a Jupiter mass, well into the high mass planet
region. Results of the entire survey include the proper motion verification of
five low-mass stellar companions, two brown dwarfs (HR7329B and TWA5B) and one
possible brown dwarf binary (Gl 577B/C).Comment: 11 figures, accepted by A
- …
