191 research outputs found

    Coherent Dynamics in Solutions of Colloidal Plexcitonic Nanohybrids at Room Temperature

    Get PDF
    The increasing ability to prepare systems with nanoscale resolution and address their optical properties with ultrashort time precision is revealing quantum phenomena with tremendous potential in quantum nanotechnologies. Colloidal plexcitonic materials promise to play a pivotal role in this scenario. Plexcitons are hybrid states originating from the mixing of the plasmon resonances of metal nanostructures with molecular excitons. They allow nanoscale confinement of electromagnetic fields and the establishment of strong couplings between light and matter, potentially giving rise to controllable and tunable coherent phenomena. However, the characterization of the ultrafast coherent and incoherent dynamics of colloidal plexciton nanohybrids remains highly unexplored. Here, two dimensional electronic spectroscopy (2DES) is employed to study the quantum coherent interactions active after the photoexcitation of these systems. By comparing the response of the nanohybrids with the one of the uncoupled systems, the nonlinear photophysical processes at the base of the coherent dynamics are identified, allowing a step forward toward the effective understanding and exploitation of these nanomaterials

    Middle Eocene to Middle Miocene planktonic foraminiferal biostratigraphy for internal basins (Monferrato and Northern Appennines, Italy).

    Get PDF

    Reconstructing Bioinvasion Dynamics Through Micropaleontologic Analysis Highlights the Role of Temperature Change as a Driver of Alien Foraminifera Invasion

    Get PDF
    Invasive alien species threaten biodiversity and ecosystem structure and functioning, but incomplete assessments of their origins and temporal trends impair our ability to understand the relative importance of different factors driving invasion success. Continuous time-series are needed to assess invasion dynamics, but such data are usually difficult to obtain, especially in the case of small-sized taxa that may remain undetected for several decades. In this study, we show how micropaleontologic analysis of sedimentary cores coupled with radiometric dating can be used to date the first arrival and to reconstruct temporal trends of foraminiferal species, focusing on the alien Amphistegina lobifera and its cryptogenic congener A. lessonii in the Maltese Islands. Our results show that the two species had reached the Central Mediterranean Sea several decades earlier than reported in the literature, with considerable implications for all previous hypotheses of their spreading patterns and rates. By relating the population dynamics of the two foraminifera with trends in sea surface temperature, we document a strong relationship between sea warming and population outbreaks of both species. We conclude that the micropaleontologic approach is a reliable procedure for reconstructing the bioinvasion dynamics of taxa having mineralized remains, and can be added to the toolkit for studying invasions

    Tailoring the pressure-drop in multi-layered open-cell porous inconel structures

    Get PDF
    This study investigates the pressure-drop behaviour associated with airflow through bulk and structurally tailored multi-layered, open-cell porous Inconel structures over a wide airflow velocity range (0–50 m s-1). The effect of airflow velocity on the pressure-drop behaviour as a function of the sample thickness is presented and related to the flow behaviour corresponding to the relevant flow regimes (Darcy, Forchheimer, Turbulent and Postturbulent). Entrance effects are highlighted as a source of the pressure-drop increase for porous structures with air gaps, regardless of their sizes, as long as they are larger than those generated by loosely-stacked structures. The pressure-drops for gapped porous structures and the mathematical-summation of the pressure drop for the corresponding individual components, were in very good agreement, at lower airflow velocities. The potential for mass-efficient porous structures, providing a high pressure drop, was demonstrated using multiple thin porous laminates separated by air gaps

    When ring makes the difference: coordination properties of Cu2+/Cu+ complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications

    Get PDF
    Three polyazamacrocyclic ligands, i.e. 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S) and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S), were considered as potential chelators for the medically relevant copper radioisotopes. The ligands have been synthesized through facile, single-step reactions, and their acidity constants have been measured in aqueous solution at 25 degrees C. The kinetic, thermodynamic, electrochemical and structural properties of their Cu2+ and Cu+ complexes were investigated in aqueous solution at 25 degrees C using spectroscopic (UV-Visible, EPR, NMR) and electrochemical techniques (pH-potentiometric titrations, cyclic voltammetry and electrolysis). TACD3S was demonstrated to be unable to stabilize Cu2+, whereas for TRI4S and TE4S the formation of stable monocupric (CuL2+) and monocuprous (CuL+) complexes was detected. TRI4S coordinates Cu(2+)via a [4N] and a [4N]S array of donor atoms while with TE4S only the latter geometry exists. The thermodynamic stability and the kinetic inertness of the copper complexes formed by TACD3S, TRI4S and TE4S were compared with those previously reported for 1,4,7,10-tetrakis-[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclododecane (DO4S) to unravel the influence of the ring size and the nitrogen donor array on the copper chelation properties of these sulfur-rich macrocycles. The copresence of four nitrogen atoms is an essential feature to allow effective copper coordination when a 12-member ring is employed, as the Cu2+-DO4S complexes were far more stable than those of Cu2+-TACD3S. Furthermore, the larger ring size of TRI4S and TE4S, when compared to DO4S, progressively increases the rate of the Cu2+ complexation reactions but decreases the thermodynamic stability of the Cu2+ complexes. Despite this, the ability of TRI4S and TE4S to stably accommodate both copper oxidation states makes them very attractive for application in nuclear medicine as they could avoid the demetallation after the biologically triggered Cu2+/Cu+ reduction

    Experimental investigation of pressure-drop characteristics across multi-layer porous metal structures

    Get PDF
    This study investigates the effect of airflow (in the range of 0–70 m s-1) on the pressure-drop characteristics for a novel multi-layered, nickel-based porous metal, as a function of thickness (affected by sectioning) and density (affected by compression). In addition to generating unique data for these materials, the study highlights the need for precise pinpointing of the different flow regimes (Darcy, Forchheimer and Turbulent) in order to enable accurate determination of the permeability (K) and form drag coefficient (C) defined by the Forchheimer equation and to understand the complex dependence of length-normalised pressure drop on sample thickness

    Lung fibrosis quantified by HRCT in scleroderma patients with different disease forms and ANA specificities

    Get PDF
    Objective: to define the prevalence of interstitial lung fibrosis in systemic sclerosis (SSc) and its relationship with the different clinical forms of disease and ANA specificities. Methods: fifty patients with SSc were submitted to pulmonary high resolution computed tomography (HRCT). Lung abnormalities were evaluated according to Warrick's score that considers both the severity and the extent of fibrotic lesions. Results: pulmonary HRCT abnormalities were observed in 84% of SSc patients. Ground glass aspects (60%), irregular pleural margins (56%) and septal/subpleural lines (68%) were the most common lesions. The distribution of these abnormalities favoured the posterior basilar segments of both lungs. HRCT findings were significantly more frequent in males and in patients with the cutaneous diffuse form of SSc and with the specific antibody anti-Scl70. Conclusions: HRCT is a very useful method for the diagnosis of interstitial lung fibrosis in SSc. Warrick's score permits to quantify the HRCT findings and to evaluate their relationship with the disease clinical forms and ANA specificities

    The contact angle of nanofluids as thermophysical property

    Get PDF
    Droplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids – suspensions containing nanometre-sized particles – can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere. Graphene oxide, alumina, and gold nanoparticles are suspended in deionised water. Within the framework of a round robin test carried out by nine independent European institutes the contact angle of these suspensions on a stainless steel solid substrate is measured with high accuracy. No dependence of nanofluids contact angle of sessile droplets on the measurement device is found. However, the measurements reveal clear differences of the contact angle of nanofluids compared to the pure base fluid. Physically founded correlations of the contact angle in dependency of droplet temperature and volume are obtained from the data. Extrapolating these functions to zero droplet volume delivers the searched limiting contact angle depending only on the temperature. It is for the first time, that this specific parameter, is understood as a characteristic material property of nanofluid droplets placed on a certain substrate under a certain atmosphere. Together with the surface tension it provides the foundation of proper modelling phase change heat transfer processes of nanofluids
    • …
    corecore