131 research outputs found

    Fixed points and infrared completion of quantum gravity

    Get PDF
    The phase diagram of four-dimensional Einstein–Hilbert gravity is studied using WilsonÊŒs renormalization group. Smooth trajectories connecting the ultraviolet fixed point at short distances with attractive infrared fixed points at long distances are derived from the non-perturbative graviton propagator. Implications for the asymptotic safety conjecture and further results are discussed

    Optimization of field-dependent nonperturbative renormalization group flows

    Full text link
    We investigate the influence of the momentum cutoff function on the field-dependent nonperturbative renormalization group flows for the three-dimensional Ising model, up to the second order of the derivative expansion. We show that, even when dealing with the full functional dependence of the renormalization functions, the accuracy of the critical exponents can be simply optimized, through the principle of minimal sensitivity, which yields Μ=0.628\nu = 0.628 and η=0.044\eta = 0.044.Comment: 4 pages, 3 figure

    Superfluidity within Exact Renormalisation Group approach

    Full text link
    The application of the exact renormalisation group to a many-fermion system with a short-range attractive force is studied. We assume a simple ansatz for the effective action with effective bosons, describing pairing effects and derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator was shown to lead to similar results.Comment: 17 pages, 3 figures, to appear in the proceedings of Renormalization Group 2005 (RG 2005), Helsinki, Finland, 30 Aug - 3 Sep 200

    Non-Perturbative Renormalization Group calculation of the scalar self-energy

    Get PDF
    We present the first numerical application of a method that we have recently proposed to solve the Non Perturbative Renormalization Group equations and obtain the n-point functions for arbitrary external momenta. This method leads to flow equations for the n-point functions which are also differential equations with respect to a constant background field. This makes them, a priori, difficult to solve. However, we demonstrate in this paper that, within a simple approximation which turns out to be quite accurate, the solution of these flow equations is not more complicated than that of the flow equations obtained in the derivative expansion. Thus, with a numerical effort comparable to that involved in the derivative expansion, we can get the full momentum dependence of the n-point functions. The method is applied, in its leading order, to the calculation of the self-energy in a 3-dimensional scalar field theory, at criticality. Accurate results are obtained over the entire range of momenta.Comment: 29 page

    Infrared fixed point in quantum Einstein gravity

    Get PDF
    We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent Μ\nu of the correlation length is 1/2. However, there exists a certain extension of the model which gives finite correlation length in the broken symmetric phase. It typically appears in case of models possessing a first order phase transitions as is demonstrated on the example of the scalar field theory with a Coleman-Weinberg potential.Comment: 9 pages, 7 figures, final version, to appear in JHE

    Non Perturbative Renormalization Group, momentum dependence of nn-point functions and the transition temperature of the weakly interacting Bose gas

    Full text link
    We propose a new approximation scheme to solve the Non Perturbative Renormalization Group equations and obtain the full momentum dependence of nn-point functions. This scheme involves an iteration procedure built on an extension of the Local Potential Approximation commonly used within the Non Perturbative Renormalization Group. Perturbative and scaling regimes are accurately reproduced. The method is applied to the calculation of the shift ΔTc\Delta T_c in the transition temperature of the weakly repulsive Bose gas, a quantity which is very sensitive to all momenta intermediate between these two regions. The leading order result is in agreement with lattice calculations, albeit with a theoretical uncertainty of about 25%. The next-to-leading order differs by about 10% from the best accepted result

    On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory

    Full text link
    We study the nature of the confinement phase transition in d=3+1 dimensions in various non-abelian gauge theories with the approach put forward in [1]. We compute an order-parameter potential associated with the Polyakov loop from the knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. We find that it is weaker than for SU(N). We show that this can be understood in terms of the eigenvalue distribution of the order parameter potential close to the phase transition.Comment: 15 page

    Optimization of the derivative expansion in the nonperturbative renormalization group

    Get PDF
    We study the optimization of nonperturbative renormalization group equations truncated both in fields and derivatives. On the example of the Ising model in three dimensions, we show that the Principle of Minimal Sensitivity can be unambiguously implemented at order ∂2\partial^2 of the derivative expansion. This approach allows us to select optimized cut-off functions and to improve the accuracy of the critical exponents Îœ\nu and η\eta. The convergence of the field expansion is also analyzed. We show in particular that its optimization does not coincide with optimization of the accuracy of the critical exponents.Comment: 13 pages, 9 PS figures, published versio

    Renormalization Flow of Bound States

    Get PDF
    A renormalization group flow equation with a scale-dependent transformation of field variables gives a unified description of fundamental and composite degrees of freedom. In the context of the effective average action, we study the renormalization flow of scalar bound states which are formed out of fundamental fermions. We use the gauged Nambu--Jona-Lasinio model at weak gauge coupling as an example. Thereby, the notions of bound state or fundamental particle become scale dependent, being classified by the fixed-point structure of the flow of effective couplings.Comment: 25 pages, 3 figures, v2: minor corrections, version to appear in PR
    • 

    corecore