10,756 research outputs found

    Baryon Self-Energy With QQQ Bethe-Salpeter Dynamics In The Non-Perturbative QCD Regime: n-p Mass Difference

    Get PDF
    A qqq BSE formalism based on DB{\chi}S of an input 4-fermion Lagrangian of `current' u,d quarks interacting pairwise via gluon-exchange-propagator in its {\it non-perturbative} regime, is employed for the calculation of baryon self-energy via quark-loop integrals. To that end the baryon-qqq vertex function is derived under Covariant Instantaneity Ansatz (CIA), using Green's function techniques. This is a 3-body extension of an earlier q{\bar q} (2-body) result on the exact 3D-4D interconnection for the respective BS wave functions under 3D kernel support, precalibrated to both q{\bar q} and qqq spectra plus other observables. The quark loop integrals for the neutron (n) - proton (p) mass difference receive contributions from : i) the strong SU(2) effect arising from the d-u mass difference (4 MeV); ii) the e.m. effect of the respective quark charges. The resultant n-p difference comes dominantly from d-u effect (+1.71 Mev), which is mildly offset by e.m.effect (-0.44), subject to gauge corrections. To that end, a general method for QED gauge corrections to an arbitrary momentum dependent vertex function is outlined, and on on a proportionate basis from the (two-body) kaon case, the net n-p difference works out at just above 1 MeV. A critical comparison is given with QCD sum rules results.Comment: be 27 pages, Latex file, and to be published in IJMPA, Vol 1

    3D-4D Interlinkage Of qqq Wave Functions Under 3D Support For Pairwise Bethe-Salpeter Kernels

    Get PDF
    Using the method of Green's functions within a Bethe-Salpeter framework characterized by a pairwise qq interaction with a Lorentz-covariant 3D support to its kernel, the 4D BS wave function for a system of 3 identical relativistic spinless quarks is reconstructed from the corresponding 3D form which satisfies a fully connected 3D BSE. This result is a 3-body generalization of a similar 2-body result found earlier under identical conditions of a 3D support to the corresponding qq-bar BS kernel under Covariant Instaneity (CIA for short). (The generalization from spinless to fermion quarks is straightforward). To set the CIA with 3D BS kernel support ansatz in the context of contemporary approaches to the qqq baryon problem, a model scalar 4D qqq BSE with pairwise contact interactions to simulate the NJL-Faddeev equations is worked out fully, and a comparison of both vertex functions shows that the CIA vertex reduces exactly to the NJL form in the limit of zero spatial range. This consistency check on the CIA vertex function is part of a fuller accounting for its mathematical structure whose physical motivation is traceable to the role of `spectroscopy' as an integral part of the dynamics.Comment: 20 pages, Latex, submitted via the account of K.-C. Yan

    Data-Informed Platform for Health. Structured district decision-making using local data. Prototype Phase, West Bengal, India

    Get PDF
    This report presents findings and recommendations from an evaluation of the Data Informed Platform for Health (DIPH), a structured decision-support strategy to promote the use of local data for health decision-making. The DIPH was developed and pilot-tested in India by the IDEAS project of the London School of Hygiene & Tropical Medicine (LSHTM) from December 2015 to March 2017

    Site-specific Tn7 transposition into the human genome

    Get PDF
    The bacterial transposon, Tn7, inserts into a single site in the Escherichia coli chromosome termed attTn7 via the sequence-specific DNA binding of the target selector protein, TnsD. The target DNA sequence required for Tn7 transposition is located within the C-terminus of the glucosamine synthetase (glmS) gene, which is an essential, highly conserved gene found ubiquitously from bacteria to humans. Here, we show that Tn7 can transpose in vitro adjacent to two potential targets in the human genome: the gfpt-1 and gfpt-2 sequences, the human analogs of glmS. The frequency of transposition adjacent to the human gfpt-1 target is comparable with the E.coli glmS target; the human gfpt-2 target shows reduced transposition. The binding of TnsD to these sequences mirrors the transposition activity. In contrast to the human gfpt sequences, Tn7 does not transpose adjacent to the gfa-1 sequence, the glmS analog in Saccharomyces cerevisiae. We also report that a nucleosome core particle assembled on the human gfpt-1 sequence reduces Tn7 transposition by likely impairing the accessibility of target DNA to the Tns proteins. We discuss the implications of these findings for the potential use of Tn7 as a site-specific DNA delivery agent for gene therapy

    {CurveFusion}: {R}econstructing Thin Structures from {RGBD} Sequences

    Get PDF
    We introduce CurveFusion, the first approach for high quality scanning of thin structures at interactive rates using a handheld RGBD camera. Thin filament-like structures are mathematically just 1D curves embedded in R^3, and integration-based reconstruction works best when depth sequences (from the thin structure parts) are fused using the object's (unknown) curve skeleton. Thus, using the complementary but noisy color and depth channels, CurveFusion first automatically identifies point samples on potential thin structures and groups them into bundles, each being a group of a fixed number of aligned consecutive frames. Then, the algorithm extracts per-bundle skeleton curves using L1 axes, and aligns and iteratively merges the L1 segments from all the bundles to form the final complete curve skeleton. Thus, unlike previous methods, reconstruction happens via integration along a data-dependent fusion primitive, i.e., the extracted curve skeleton. We extensively evaluate CurveFusion on a range of challenging examples, different scanner and calibration settings, and present high fidelity thin structure reconstructions previously just not possible from raw RGBD sequences

    Prediction of brain tissue temperature using near-infrared spectroscopy

    Get PDF

    The Equilibrium Distribution of Gas Molecules Adsorbed on an Active Surface

    Get PDF
    We evaluate the exact equilibrium distribution of gas molecules adsorbed on an active surface with an infinite number of attachment sites. Our result is a Poisson distribution having mean X=ÎĽPPsPeX = {\mu P P_s \over P_e}, with ÎĽ\mu the mean gas density, Ps P_s the sticking probability, PeP_e the evaporation probability in a time interval Ď„\tau, and PP Smoluchowski's exit probability in time interval Ď„\tau for the surface in question. We then solve for the case of a finite number of attachment sites using the mean field approximation, recovering in this case the Langmuir isotherm.Comment: 14 pages done in late

    Strong feedback and current noise in nanoelectromechanical systems

    Full text link
    We demonstrate the feasibility of a strong feedback regime for a single-electron tunneling device weakly coupled to an underdamped single-mode oscillator. In this regime, mechanical oscillations are generated and the current is strongly modified whereas the current noise is parametrically big with respect to the Poisson value. This regime requires energy dependence of the tunnel amplitudes. For sufficiently fast tunnel rates the mechanical contribution to current noise can exceed the Poisson value even beyond the strong feedback regime.Comment: 4 pages, 3 figure

    Collapsing Spheres Satisfying An "Euclidean Condition"

    Full text link
    We study the general properties of fluid spheres satisfying the heuristic assumption that their areas and proper radius are equal (the Euclidean condition). Dissipative and non-dissipative models are considered. In the latter case, all models are necessarily geodesic and a subclass of the Lemaitre-Tolman-Bondi solution is obtained. In the dissipative case solutions are non-geodesic and are characterized by the fact that all non-gravitational forces acting on any fluid element produces a radial three-acceleration independent on its inertial mass.Comment: 1o pages, Latex. Title changed and text shortened to fit the version to appear in Gen.Rel.Grav
    • …
    corecore