Using the method of Green's functions within a Bethe-Salpeter framework
characterized by a pairwise qq interaction with a Lorentz-covariant 3D support
to its kernel, the 4D BS wave function for a system of 3 identical relativistic
spinless quarks is reconstructed from the corresponding 3D form which satisfies
a fully connected 3D BSE. This result is a 3-body generalization of a similar
2-body result found earlier under identical conditions of a 3D support to the
corresponding qq-bar BS kernel under Covariant Instaneity (CIA for short). (The
generalization from spinless to fermion quarks is straightforward).
To set the CIA with 3D BS kernel support ansatz in the context of
contemporary approaches to the qqq baryon problem, a model scalar 4D qqq BSE
with pairwise contact interactions to simulate the NJL-Faddeev equations is
worked out fully, and a comparison of both vertex functions shows that the CIA
vertex reduces exactly to the NJL form in the limit of zero spatial range. This
consistency check on the CIA vertex function is part of a fuller accounting for
its mathematical structure whose physical motivation is traceable to the role
of `spectroscopy' as an integral part of the dynamics.Comment: 20 pages, Latex, submitted via the account of K.-C. Yan