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3D-4D Interlinkage Of qqq Wave Functions Under 3D Support

For Pairwise Bethe-Salpeter Kernels
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Abstract

Using the method of Green’s functions within the framework of a Bethe-Salpeter
formalism characterized by a pairwise qq interaction with a Lorentz-covariant 3D
support to its kernel, the 4D BS wave function for a system of three identical rela-
tivistic spinless quarks is reconstructed from the corresponding 3D quantities which
satisfy a fully connected 3D BSE. This result is a 3-body generalization of a similar
3D-4D interconnection for the corresponding 2-body wave functions found earlier
under identical conditions of a Lorentz-covariant 3D support to the corresponding
BS kernel, (‘CIA’ for short), for the qq̄ interaction. (The generalization from spinless
to fermion quarks is straightforward).

To set ‘CIA’ for 3D Kernel support in the context of contemporary approaches
to the qqq baryon problem, a model scalar 4D qqq BSE with pairwise contact inter-
actions simulating the NJL-Faddeev equations, is worked out fully and compared
with the ‘CIA’ vertex function which reduces exactly to the 4D NJL-Faddeev form
in the limit of zero spatial range. This consistency check is part of a detailed ac-
counting of the CIA vertex structure whose physical motivation stems from the role
of spectroscopy when considered as an integral part of any QCD-motivated dynam-
ical investigation.
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1 Introduction: The Relativistic qqq Problem

The qqq problem must obey the mathematical requirement of connectedness [1-4], signalled
by the absence of δ-functions in its defining equation, Schroedinger (in 3D) or BSE (in
4D). Further, for a relativistic 2- or 3-body problem, the historical issue of 3D reduction
from a 4D BSE has generated much interest from the outset [5-8] to more recent times
[9-10], motivated by the Markov-Yukawa transversality condition [11]. Physically, a 3D
reduction of the BSE is linked to the problem of observed O(3)-like hadron spectra [12],
while without 3D reduction, a 4D BSE in Wick-rotated form gives O(4)-like spectra [13].
In this paper we shall address both the issues of connectedness and ‘3D-4D interlinkage’
of the qqq BS wave functions under 3D support for the pairwise kernels, termed ‘CIA’ for
short, as a 3-body extension of an earlier qq̄ investigation [9].

Our principal result is mathematical: Derivation of an explicit interconnection between
the 3D and 4D forms of the qqq BS wave functions, via Green’s function techniques for the
bound qqq state. However, an apparent lack of familiarity with the 3D support ansatz,
in the quantum mechanics literature, necessitates a prior exposition of its tenets vis-a-vis
the more familiar ones, which we shall outline in the following sub-sections, keeping in
mind the overall requirement of connectedness in a 3-particle amplitude [1-4], signalled by
the absence of any delta function in its structure, either explicitly or through its defining
equation. Originally derived within a 3D framework [1-4] whose prototype dynamics is
the Schroedinger equation, its basic logic applies to the 4D BSE framework with pairwise
kernels, with or without 3D reduction.

1.1 3D Reduction of 4D BSE

The problem of 3D reduction of the BSE itself has had a long history [5-8], born out of
certain intuitive compulsions to keep to a common time for the internal components of
a bound state composite. These have ranged from the instantaneous approximation [5]
through the quasi-potential approach [6], to other variants [7,8] in which the interaction of
the constituents can be given a physical meaning in their respective mass shells, a result
that can also be justified within the tenets of local field theory [8]. In all these methods
the starting BSE is formally 4D in all details, including its kernel, but the associated
propagators are manipulated in various subtle ways ranging from an ‘overall instantaneity’
(the quisi-potential approach [6]) to their individual ‘on-shellness’ in varying degrees [7,8].
In all these approaches, a common feature is that once the initial BSE is thus reduced to
a 3D form, there is no getting back to its original 4D form.

An alternative approach which is of more recent origin [9,10], is based on the Markov-
Yukawa Transversality Condition [11] wherein a 3D support is postulated at the outset to
the kernel of an otherwise 4D BSE, albeit in a Lorentz-covariant form, but the propagators
are left untouched in their original 4D form. This is achieved by simply demanding that
the kernel K of the pairwise interaction be a function of only the component q̂ of the
relative 4-momentum q which is transverse to the total 4-momentum P of the composite,
viz., q̂µ = q − q.PPµ/P

2, so that q̂.P = 0 identically. This may be regarded as a sort of
complementary strategy to the approaches [6-8] wherein the propagators are manipulated
but the kernel is left untouched. The main difference between the two approaches is that
while in [6-8] the original 4D BSE must be given up for good in favour of the reduced 3D
BSE as a fresh staring point of the dynamics, the alternative approach [9,10] based on the

2



Transversality Condition [11] allows both forms to be used interchangeably according to
the demands of physics. For, not only does this ansatz of ‘Covariant Instaneity’ (termed
CIA for short [9]) lead to an exact 3D reduction of the BSE, but also facilitates an equally
exact reconstruction of the original 4D BSE form without extra charge [9], so that both
forms are completely equivalent. For a 2-quark problem this was shown explicitly some
time ago [9] under ‘CIA’ which gives a concrete realization of a ‘two-tier’ approach [14]
wherein the 3D reduction of the original 4D BSE serves for the dynamics of the observed
O(3)-like spectra [12], while the reconstructed 4D BS wave function provides a natural
language for applications to various transition amplitudes as 4D quark loop integrals
[14,9]. The exact interconnection that CIA yields between the 3D and 4D forms of the
BSE shows up through the expression of the 4D BS vertex function Γ as a simple product
of only 3D quantities, viz., D × φ, where D and φ are the 3D denominator and wave
functions respectively, satisfying a relativistic Schroedinger-like equation [9]. We next
turn to the physical basis of this method [15], termed 3D-4D-BSE in the following.

1.2 3D-4D BSE vis-a-vis other QCD Motivated Methods

The physical basis of 3D-4D-BSE [15] vis-a-vis other 4D BSE-cum-SDE approaches [16],
is dynamical breaking of chiral symmetry, or DBχS for short, a la NJL [17]. While the
original NJL model [17] was conceived as a contact interaction, its vital feature of chiral
symmetry and its breaking, which it shares with other effective theories [18,19] neverthe-
less is a key ingredient which various workers have attempted to bring out [20-23] from
QCD premises in the low frequency limit to simulate its non-perturbative features. Of
particular interest to the present investigation is a non-local 4-quark interaction medi-
ated by vector exchange [21], as a prototype of the non-perturbative gluon propagator,
which offers a generalized DBχS mechanism for generating a momentum-dependent mass-
function m(p) via the Schwinger-Dyson equation (SDE). As is well known, this mechanism
accounts for the bulk of the ‘constituent’ mass of ud quarks via Politzer additivity [24].
This formalism leads to the conventional 4D BSE-SDE type framework [21,16] which was
discussed in [15] vis-a-vis 3D-4D-BSE [9].

A related aspect of QCD concerns its structure in the large NC limit, when it reduces
to an effective theory of weakly interacting mesons and glueballs [25], while baryons
emerge as solitonic configurations in the background meson fields [26]. These ideas were
later concretized by many authors [22,23] using functional integration techniques [27],
which combined both the DBχS and large NC aspects of QCD in a systematic reduction
procedure to give rise to an effective action involving local meson fields. While the large
NC limit motivates an effective 4-quark interaction of the non-local NJL-type [21], the
vacuum degeneracy of the effective action so derived [22,23] exhibits a complex structure
arising from DBχS, viz., after integrating out over the quark d.o.f.’s, the effective action of
the chiral π, σ- field (treated classically) is approximately a sum of bosonic and fermionic
parts, of which the former gives rise to mesonic excitations [28], while the latter provides
the solitonic solution corresponding to ‘baryon-number-one’[29].

Despite a common QCD basis for the 4D BSE-SDE [16] and the solitonic [26] pictures,
their actual technologies are so different that only the former [16], and not the latter [26],
is directly relevant to our discussion. In particular, the Lagrangian formulation [21] to
which our 3D-4D BSE comes closest, corresponds to an effective qq̄/qq interaction with
a gluon-like propagator to simulate both the perturbative and non-perturbative regimes,
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as originally envisaged [30] in the instantaneous approximation [5]. Subsequently this
kernel was given a covariant 3D basis [9] in the spirit of [11], and the reduced 3D BSE
found to agree with the spectra of mesons [31], as well as of baryons [32], under a common
parametrization for the gluon propagator with 2 basic constants plus the constituent quark
mass mq ≈ 270MeV . This last turned out to be consistent with the chiral symmetry
breaking SDE solution in the low momentum limit [15], so that this quantity is no longer
a free parameter. Thus this BSE-cun-SDE approach [15] with an effective gluon-like
propagator [30] produces the usual DBχS scenario, in harmony with the standard 4D
BSE-SDE picture [21,16], except for its hybrid 3D-4D structure, designed to unify the
3D hadron spectra [31-32] with the 4D quark-loop integrals [9,15]. With this physical
background for 3D-4D BSE, we now turn to the qqq sector.

1.3 The qqq BSE Structure under 3D Kernel Support

Does an interconnection similar to the qq̄ case [9] exist in the corresponding BS amplitudes
for a qqq system under identical conditions of 3D support to the pairwise BS kernel ? This
question is of great practical value since the 3D reduction of the 4D BSE already produces
fully connected integral equations for both the qq̄ [31] and qqq [32] systems with explicit
solutions for the 3D wave functions. Therefore a reconstruction [33] of the 4D qqq wave
(vertex) function in terms of the corresponding 3D quantities is a vital ingredient for
applications to various types of transition amplitudes involving qqq baryons, analogously
to the q̄q case [9,15]. To keep the technicalities to the barest minimum, we shall consider 3
identical spinless particles for simplicity and definiteness, which however need not detract
from the generality of the ensuing singularity structures. The answer is found to be in the
affirmative, except for the recognition that a 3D support to the pairwise BS kernel implies
a truncation of the Hilbert space. Such truncation, while still allowing an unambiguous
reduction of the BSE from the 4D to the 3D level, nevertheless leaves an information gap
in the reverse direction, viz., from 3D to 4D [33] for any n-body system except for n = 2
where both transitions are exactly reversible (a sort of degenerate situation) [9]. The extra
charge needed to complete the reverse transition comes in the form of a 1D delta-function
which however has nothing to do with connectedness [3,4] of an n-body amplitude, as
will be formally demonstrated in Sects.2-4, and fully accounted for in Sect.5 through a
detailed comparison with a model NJL-Faddeev problem which has proved popular in
recent years [34]. (Other methods include i) non-topological solitons [29,35]; and ii) QCD
bosonization with diquarks [36], but these will not be considered).

Regarding 3D-4D-BSE [33] versus 4D NJL-Faddeev [34], the following perspective
is in order: The 3D-4D-BSE pairwise kernel with covariant instantaneity (CIA) has a
contact interaction only in the 1D time-like variable, while the corresponding 4D-NJL
kernel exhibits contact behaviour in all the 4D space-time variables. The consistency of
the two approaches is ensured by checking that the latter is the (expected) K = const
limit of the former, and further that the Hilbert space information gap in the way of
reconstruction of the 4D BS wave function in terms of 3D quantities [33] vanishes in this
limit, so that the full 4D structure of NJL-Faddeev [34] is automatically recovered.

The paper which makes use of Green’s function techniques, is organized as follows.
In Sec.2 we rederive the 3D-4D interconnection [9] for a two-body system, now by the
Green’s function method, whence we reproduce the previously derived result [9] for the
corresponding BS wave functions in 3D and 4D forms. In Sec.3, the BSE for the 4D
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Green’s function for 3 identical spinless quarks (q), is reduced to the 3D form by inte-
grating w.r.t. two internal time-like momenta, and in so doing, introducing 3D Green’s
functions satisfying a fully connected 3D BSE, free from δ-functions, as anticipated from
BS wave function studies [32,37]. With this 3D BSE as the check point, Sec.4 gives a
reconstruction of the full 4D Green’s function in terms of its (partial) 3D counterparts,
so as to satisfy exactly the above 3D BSE, after integration w.r.t. the relevant time-like
momenta. The resultant vertex function, eq.(4.10), has a 1D δ-function singularity which
admits a (Fermi-like) ‘pseudopotential’ interpretation [38].

Sec.5 is devoted to the solution of a 4D NJL-Faddeev problem with scalar-isoscalar
quarks in pairwise contact interaction, leading to a 4D baryon-quark-diquark vertex func-
tion (5.9), and subjected to a pointwise comparison with (4.10) [sec.(5.4)], and its struc-
ture accounted for. Sec.6 sums up our main results as obtained in Secs.3-4, vis-a-vis the
corresponding results of NJL-Faddeev [34] as obtained in Sec.5, and briefly indicates the
technical issues arising from the inclusion of spin. It concludes with a brief comparison
with some contemporary approaches, [6-8,16,34-36], especially in relation to their respec-
tive roles in treating the spectroscopy sector as an integral part of the qqq dynamics.

2 3D-4D Interconnection For q̄q System

If the BSE for a spinless q̄q system has a 3D support for its kernel K as K(q̂, q̂′) where q̂ is
the component of the relative momentum q = (p1 − p2)/2 orthogonal to the total hadron
4-momentum P = p1 + p2, then the 4D hadron-quark vertex function Γ is a function of
q̂ only [9]. For this 2-body case the 4D and 3D forms of the BSE are exactly reversible
without further assumptions. For the 3-body case a corresponding 3D-4D connection
was obtained on the basis of semi-intuitive arguments [37] whose formal derivation is the
central aim of this paper. To that end we shall formulate the 4D and 3D BSE’s in terms
of Green’s functions to derive the 3D-4D connection for a two-body system in terms of
their respective Green’s functions, in preparation for the generalization to the three-body
case in the next two sections.

We shall mostly use the notation and phase conventions of [8,12] for the various quan-
tities (momenta, propagators, etc). The 4D qq Green’s function G(p1p2; p1

′p2
′) near a

bound state satisfies a 4D BSE without the inhomogeneous term, viz. [9,37],

i(2π)4G(p1p2; p1
′p2

′) = ∆1
−1∆2

−1

∫

dp1
′′dp2

′′K(p1p2; p1
′′p2

′′)G(p1
′′p2

′′; p1
′p2

′) (2.1)

where
∆1 = p1

2 + mq
2, (2.2)

and mq is the mass of each quark. Now using the relative 4- momentum q = (p1 − p2)/2
and total 4-momentum P = p1 + p2 (similarly for the other sets), and removing a δ-
function for overall 4-momentum conservation, from each of the G- and K- functions,
eq.(2.1) reduces to the simpler form

i(2π)4G(q.q′) = ∆1
−1∆2

−1

∫

dq̂′′Mdσ′′K(q̂, q̂′′)G(q′′, q′) (2.3)

where q̂µ = qµ − σPµ, with σ = (q.P )/P 2, is effectively 3D in content (being orthog-
onal to Pµ). Here we have incorporated the ansatz of a 3D support for the kernel K
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(independent of σ and σ′), and broken up the 4D measure dq′′ arising from (2.1) into the
product dq̂′′Mdσ′′ of a 3D and a 1D measure respectively. We have also suppressed the
4-momentum Pµ label, with (P 2 = −M2), in the notation for G(q.q′).

Now define a fully 3D Green’s function Ĝ(q̂, q̂′) as [9,37]

Ĝ(q̂, q̂′) =
∫ ∫

M2dσdσ′G(q, q′) (2.4)

and two (hybrid) 3D-4D Green’s functions G̃(q̂, q′), G̃(q, q̂′) as

G̃(q̂, q′) =
∫

MdσG(q, q′); G̃(q, q̂′) =
∫

Mdσ′G(q, q′); (2.5)

Next, use (2.5) in (2.3) to give

i(2π)4G̃(q, q̂′) = ∆1
−1∆2

−1

∫

dq′′K(q̂, q̂′′)G̃(q′′, q̂′) (2.6)

Now integrate both sides of (2.3) w.r.t. Mdσ and use the result [9]

∫

Mdσ∆1
−1∆2

−1 = 2πiD−1(q̂); D(q̂) = 4ω̂(ω̂2 − M2/4); ω̂2 = mq
2 + q̂2 (2.7)

to give a 3D BSE w.r.t. the variable q̂, while keeping the other variable q′ in a 4D form:

(2π)3G̃(q̂, q′) = D−1

∫

dq̂′′K(q̂, q̂′′)G̃(q̂′′, q′) (2.8)

Now a comparison of (2.3) with (2.8) gives the desired connection between the full 4D
G-function and the hybrid G̃(q̂, q′)-function:

2πiG(q, q′) = D(q̂)∆1
−1∆2

−1G̃(q̂, q′) (2.9)

which is the Green’s function counterpart, near the bound state, of the same result [9]
connecting the corresponding BS wave functions. Again, the symmetry of the left hand
side of (2.9) w.r.t. q and q′ allows us to write the right hand side with the roles of q and
q′ interchanged. This gives the dual form

2πiG(q, q′) = D(q̂′)∆1
′−1

∆2
′−1

G̃(q, q̂′) (2.10)

which on integrating both sides w.r.t. Mdσ gives

2πiG̃(q̂, q′) = D(q̂′)∆1
′−1

∆2
′−1

Ĝ(q̂, q̂′). (2.11)

Substitution of (2.11) in (2.9) then gives the symmetrical form

(2πi)2G(q, q′) = D(q̂)∆1
−1∆2

−1Ĝ(q̂, q̂′)D(q̂′)∆1
′−1

∆2
′−1

(2.12)

Finally, integrating both sides of (2.8) w.r.t. Mdσ′, we obtain a fully reduced 3D BSE for
the 3D Green’s function:

(2π)3Ĝ(q̂, q̂′) = D−1(q̂
∫

dq̂′′K(q̂, q̂′′)Ĝ(q̂′′, q̂′) (2.13)
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Eq.(2.12) which is valid near the bound state pole (since the inhomogeneous term has
been dropped for simplicity) expresses the desired connection between the 3D and 4D
forms of the Green’s functions; and eq(2.13) is the determining equation for the 3D form.
A spectral analysis can now be made for either of the 3D or 4D Green’s functions in the
standard manner, viz.,

G(q, q′) =
∑

n

Φn(q; P )Φ∗

n(q
′; P )/(P 2 + M2) (2.14)

where Φ is the 4D BS wave function. A similar expansion holds for the 3D G-function
Ĝ in terms of φn(q̂). Substituting these expansions in (2.12), one immediately sees the
connection between the 3D and 4D wave functions in the form:

2πiΦ(q, P ) = ∆1
−1∆2

−1D(q̂)φ(q̂) (2.15)

whence the BS vertex function becomes Γ = D × φ/(2πi) as found in [9]. We shall make
free use of these results, taken as qq subsystems, for our study of the qqq G-functions in
Sections 3 and 4.

3 qqq Green’s Function: 3D Reduction of BSE

As in the two-body case, and in an obvious notation for various 4-momenta (without
the Greek suffixes), we consider the most general Green’s function G(p1p2p3; p1

′p2
′p3

′) for
3-quark scattering near the bound state pole (for simplicity) which allows us to drop the
various inhomogeneous terms from the beginning. Again we take out an overall delta
function δ(p1 + p2 + p3 − P ) from the G-function and work with two internal 4-momenta
for each of the initial and final states defined as follows [37]:

√
3ξ3 = p1 − p2 ; 3η3 = −2p3 + p1 + p2 (3.1)

P = p1 + p2 + p3 = p1
′ + p2

′ + p3
′ (3.2)

and two other sets ξ1, η1 and ξ2, η2 defined by cyclic permutations from (3.1). Further,
as we shall be considering pairwise kernels with 3D support, we define the effectively 3D
momenta p̂i, as well as the three (cyclic) sets of internal momenta ξ̂i, η̂i, (i = 1,2,3) by
[37]:

p̂i = pi − νiP ; ξ̂i = ξi − siP ; η̂i = ηi − tiP (3.3)

νi = (P.pi)/P
2 ; si = (P.ξi)/P

2 ; ti = (P.ηi)/P
2 (3.4)

√
3s3 = ν1 − ν2 ; 3t3 = −2ν3 + ν1 + ν2 (+cyclicpermutations) (3.5)

The space-like momenta p̂i and the time-like ones νi satisfy [37]

p̂1 + p̂2 + p̂3 = 0 ; ν1 + ν2 + ν3 = 1 (3.6)

Strictly speaking, in the spirit of covariant instantaneity, we should have taken the relative
3D momenta ξ̂, η̂ to be in the instantaneous frames of the concerned pairs, i.e., w.r.t. the
rest frames of Pij = pi + pj ; however the difference between the rest frames of P and Pij

is small and calculable [37], while the use of a common 3-body rest frame (P = 0) lends
considerable simplicity and elegance to the formalism.
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We may now use the foregoing considerations to write down the BSE for the 6-point
Green’s function in terms of relative momenta, on closely parallel lines to the 2-body case.
To that end note that the 2-body relative momenta are qij = (pi−pj)/2 =

√
3ξk/2, where

(ijk) are cyclic permutations of (123). Then for the reduced qqq Green’s function, when
the last interaction was in the (ij) pair, we may use the notation G(ξkηk; ξk

′ηk
′), together

with ’hat’ notations on these 4-momenta when the corresponding time-like components
are integrated out. Further, since the pair ξk, ηk is permutation invariant as a whole,
we may choose to drop the index notation from the complete G-function to emphasize
this symmetry as and when needed. The G-function for the qqq system satisfies, in the
neighbourhood of the bound state pole, the following (homogeneous) 4D BSE for pairwise
qq kernels with 3D support:

i(2π)4G(ξη; ξ′η′) =
∑

123

∆1
−1∆2

−1

∫

dq̂′′
12

Mdσ12
′′K(q̂12, q̂

′′

12
)G(ξ3

′′η3
′′; ξ3

′η3
′) (3.7)

where we have employed a mixed notation (q12 versus ξ3) to stress the two-body nature
of the interaction with one spectator at a time, in a normalization directly comparable
with eq.(2.3) for the corresponding two-body problem. Note also the connections

σ12 =
√

3s3/2; q̂12 =
√

3ξ̂3/2; η̂3 = −p̂3, etc (3.8)

The next task is to reduce the 4D BSE (3.7) to a fully 3D form through a sequence
of integrations w.r.t. the time-like momenta si, ti applied to the different terms on the
right hand side, provided both variables are simultaneously permuted. We now define the
following fully 3D as well as mixed (hybrid) 3D-4D G-functions according as one or more
of the time-like ξ, η variables are integrated out:

Ĝ(ξ̂η̂; ξ̂′η̂′) =
∫ ∫ ∫ ∫

dsdtds′dt′G(ξη; ξ′η′) (3.9)

which is S3-symmetric.

G̃3η(ξη̂; ξ′η̂′) =
∫ ∫

dt3dt3
′G(ξη; ξ′η′); (3.10)

G̃3ξ(ξ̂η; ξ̂′η′) =
∫ ∫

ds3ds3
′G(ξη; ξ′η′); (3.11)

The last two equations are however not symmetric w.r.t. the permutation group S3, since
both the variables ξ, η are not simultaneously transformed; this fact has been indicated
in eqs.(10,11) by the suffix “3” on the corresponding (hybrid) G̃-functions, to emphasize
that the ‘asymmetry’ is w.r.t. the index “3”. We shall term such quantities “S3-indexed”,
to distinguish them from S3-symmetric quantities as in eq.(3.9). The full 3D BSE for the
Ĝ-function is obtained by integrating out both sides of (3.7) w.r.t. the st-pair variables
dsidsj

′dtidtj
′ (giving rise to an S3-symmetric quantity), and using (3.9) together with

(3.8) as follows:

(2π)3Ĝ(ξ̂η̂; ξ̂′η̂′) =
∑

123

D−1(q̂12)
∫

dq̂′′
12

K(q̂12, q̂
′′

12
)Ĝ(ξ̂′′η̂′′; ξ̂′η̂′) (3.12)

This integral equation for Ĝ which is the 3-body counterpart of (2.13) for a qq system in
the neighbourhood of the bound state pole, is the desired 3D BSE for the qqq system in a
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fully connected form, i.e., free from delta functions. Now using a spectral decomposition
for Ĝ

Ĝ(ξ̂η̂; ξ̂′η̂′) =
∑

n

φn(ξ̂η̂; P )φ∗

n(ξ̂
′η̂′; P )/(P 2 + M2) (3.13)

on both sides of (3.12) and equating the residues near a given pole P 2 = −M2, gives the
desired equation for the 3D wave function φ for the bound state in the connected form:

(2π)3φ(ξ̂η̂; P ) =
∑

123

D−1(q̂12)
∫

dq̂′′
12

K(q̂12, q̂
′′

12
)φ(ξ̂′′η̂′′; P ) (3.14)

The solution of this equation for the ground state was found in [32] in a gaussian form
which implies that φ(ξ̂η̂; P ) is an S3-invariant function of ξ̂2

i + η̂2

i , valid for any index “i”.
While the gaussian form may prove too restrictive for more general applications, the mere
S3-symmetry of φ in the (ξ̂i, η̂i) pair may prove adequate in practice, and hence useful
for both the solution of (3.14) and for the reconstruction of the 4D BS wave function in
terms of the 3D wave function (3.14), as is done in Sec.4 below.

4 Reconstruction of the 4D BS Wave Function

To re-express the 4D G-function (3.7) in terms of the 3D Ĝ-function (3.12), we first adapt
the result (2.12) to the hybrid Green’s function of the (12) subsystem given by G̃3η,
eq.(3.10), in which the 3-momenta η̂3, η̂

′

3
play a parametric role reflecting the spectator

status of quark #3, while the active roles are played by q12, q12
′ =

√
3(ξ3, ξ3

′)/2, for which
the analysis of Sec.2 applies directly. This gives

(2πi)2G̃3η(ξ3η̂3; ξ3

′η̂′

3
) = D(q̂12)∆1

−1∆2
−1Ĝ(ξ̂3η̂3; ξ̂

′

3
η̂′

3
)D(q̂′

12
)∆1

′−1
∆2

′−1
(4.1)

where on the right hand side, the ‘hatted’ G-function has full S3-symmetry, although (for
purposes of book-keeping) we have not shown this fact explicitly by deleting the suffix ‘3’
from its arguments. A second relation of this kind may be obtained from (3.7) by noting
that the 3 terms on its right hand side may be expressed in terms of the hybrid G̃3ξ

functions vide their definitions (3.11), together with the 2-body interconnection between
(ξ3, ξ3

′) and (ξ̂3, ξ̂
′

3
) expressed once again via (4.1), but without the ‘hats’ on η3 and η3

′.
This gives

(
√

3πi)2G(ξ3η3; ξ3

′η3
′) = (

√
3πi)2G(ξη; ξ′η′)

=
∑

123

∆1
−1∆2

−1(πi
√

3)
∫

dq̂′′
12

Mdσ12
′′K(q̂12, q̂

′′

12
)G(ξ3

′′η3
′′; ξ3

′η3
′)

=
∑

123

D(q̂12)∆1
−1∆2

−1G̃3ξ(ξ̂3η3; ξ̂
′

3
η3

′)∆1
′−1

∆2
′−1

(4.2)

where the second form exploits the symmetry between ξ, η and ξ′, η′.
This is as far as we can go with the qqq Green’s function, using the 2-body techniques

of Sec.2. However,, unlike the 2-body case where the reconstruction of the 4D G-function
in terms of the corresponding 3D quantity was complete at this stage, the process is not
yet complete for the 3-body case, as eq.(4.2) clearly shows. This is due to the truncation

of Hilbert space implied in the ansatz of 3D support to the pairwise BSE kernel K which,
while facilitating a 4D to 3D BSE reduction without extra charge, does not have the
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complete information to permit the reverse transition (3D to 4D) without additional
assumptions. This limitation of the 3D support ansatz for the BSE kernel affects all
n-body systems except n = 2 (which may be regarded as a sort of degenerate situation.

Now as a purely mathematical problem, we must look for a suitable ansatz for the
quantity G̃3ξ on the right hand side of (4.2) in terms of known quantities, so that the
reconstructed 4D G-function satisfies the 3D equation (3.12) exactly, which may be re-
garded as a “check-point” for the entire exercise. We therefore seek a structure of the
form

G̃3ξ(ξ̂3η3; ξ̂
′

3
η3

′) = Ĝ(ξ̂3η̂3; ξ̂
′

3
η̂′

3
) × F (p3, p3

′) (4.3)

where the unknown function F must involve only the momentum of the spectator quark
#3. A part of the η3, η3

′ dependence has been absorbed in the Ĝ function on the right,
so as to satisfy the requirements of S3-symmetry for this 3D quantity, whether it has a
gaussian structure [32] (where it is explicit), or a more general one (where it is not so
explicit); see the discussion below eq(3.14).

As to the remaining factor F , it is necessary to choose its form in a careful manner so
as to conform to the conservation of 4-momentum for the free propagation of the spectator
between two neighbouring vertices, consistently with the symmetry between p3 and p3

′.
A possible choice consistent with these conditions is:

F (p3, p3
′) = C3∆3

−1δ(ν3 − ν3
′) (4.4)

where we have taken only the time-component of the 4-momentum p3 in the δ-function
since the effect of its space component has already been absorbed in the “connected” (3D)
Green’s function Ĝ. Next, ∆3

−1 represents the “free” propagation of quark #3 between
successive vertices, while C3 represents some residual effects which may at most depend
on the 3-momentum p̂3, but must satisfy the main constraint that the 3D BSE, eq.(3.12),
be explicitly satisfied.

To check the self-consistency of the ansatz (4.4), integrate both sides of (4.2) w.r.t.
ds3ds3

′dt3dt3
′ to recover the 3D S3-invariant Ĝ-function on the left hand side. Next, in the

first form on the right hand side, integrate w.r.t. ds3ds3
′ on the G-function which alone

involves these variables. This yields the quantity G̃3ξ. At this stage, employ the ansatz
(4.4) to integrate over dt3dt3

′. Consistency with the 3D BSE, eq.(3.12), now demands

C3

∫ ∫

dν3dν3
′∆3

−1δ(ν3 − ν3
′) = 1; (sincedt = dν) (4.5)

The 1D integration w.r.t. dν3 may be evaluated as a contour integral over the propagator
∆−1 , which gives the pole at ν3 = ω̂3/M , (see below for its definition). Evaluating the
residue then gives

C3 = iπ/(Mω̂3); ω̂2

3
= mq

2 + p̂2

3
(4.6)

which will reproduce the 3D BSE, eq.(3.12), exactly! Substitution of (4.4) in the second
form of (4.2) finally gives the desired 3-body generalization of (2.12) in the form

3G(ξη; ξ′η′) =
∑

123

D(q̂12)∆1F ∆2F D(q̂′
12

)∆1F
′∆2F

′Ĝ(ξ̂3η̂3; ξ̂
′

3
η̂′

3
)[∆3F /(Mπω̂3)] (4.7)

where for each index, ∆F = −i∆−1 is the Feynman propagator.
From this structure of the 4D Green’s function near the bound state pole, we can

infer the corresponding structure of the 4D BS wave function Φ(ξη; P ) through a spectral
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representation like (3.13) for the 4D Green’s function G on the left hand side of (4.2).
Equating the residues on both sides gives the desired 4D-3D connection between Φ and
φ:

Φ(ξη; P ) =
∑

123

D(q̂12)∆1
−1∆2

−1φ(ξ̂η̂; P ) ×
√

δ(ν3 − ω̂3/M)

Mω̂3∆3

(4.8)

¿From (4.8) we can infer the structure of the baryon-qqq vertex function by rewriting it
in the alternative form [37]:

Φ(ξη; P ) =
(V1 + V2 + V3)

∆1∆2∆3

(4.9)

where

V3 = D(q̂12)φ(ξ̂η̂; P ) ×
√

∆3δ(ν3 − ω̂3/M)

Mω̂3

(4.10)

The quantity V3 is the baryon-qqq vertex function corresponding to the “last interaction”
in the (12) pair, and so on cyclically. This is precisely the form (apart from a constant
factor that does not affect the baryon normalization) that had been anticipated in an
earlier study in a semi-intuitive fashion [37].

5 A Simplified 4D NJL-Faddeev Model

We now set up a simplified 4D NJL-Faddeev bound state problem, termed NJL-Faddeev,
with 3 scalar-isoscalar quarks interacting pairwise in a contact fashion. To facilitate a
direct comparison with 3D-4D-BSE, we employ the same notation and phase convention
for the various quantities as in Secs.3-4, but in view of the bound state nature of the
problem it is enough to work with the 4D BSE for the wave function only, as there is now
no special advantage in dealing with the Green’s function. We start with the qq problem
as a prerequisite for the solution of the qqq problem.

5.1 qq Bound State in NJL Model

The BSE for the 4D wave function Φ for a qq system may be written down for the NJL
model, in the notation of Sec.2 as :

i(2π)4Φ(q12P12) = ∆1
−1∆2

−1λ
∫

d4q12
′Φ(q12

′P12) (5.1)

where λ is the strength of the contact NJL interaction for any pair of (scalar) quarks.
The solution of this equation simply reads as [39]

Φ(q12P12) = A∆1
−1∆2

−1 (5.2)

When plugged back into (5.1), one gets an ‘eigenvalue’ equation for the invariant mass
M2

d = −P 2

12
of an isolated bound qq pair in the implicit form of a determining equation

for λ:
λ−1 = −i(2π)−4

∫

d4q∆1
−1∆2

−1 ≡ h(Md) (5.3)

where ∆1,2 are given by (2.2) and p1,2 = P12/2 ± q, viz., ∆1,2 = m2

q + q2 − M2

d/4 ± q.P12,
and we have indicated the result of integration by a function h(Md) of the mass Md of
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the composite bound state (diquark). Unfortunately the integral (5.3) is logarithmically
divergent, but it can be regularized with a 4D ultraviolet cut-off Λ, together with a Wick
rotation, i.e., q0 → iq0, which is allowed by the singularities of the two propagators. The
exact result is:

16π2λ−1 = 1 + ln(4Λ2/M2

d ) − 2

√

4m2
q − M2

d

Md

arcsin(Md/2mq) (5.4)

under the condition Md < 2mq. A slightly less accurate but much simpler form which
is also easier to adapt to the qqq problem to follow, may be obtained by the Feynman
method of introducing an auxiliary integration variable u (0 < u < 1) to combine the two
propagators, followed by a Wick rotation and a translation to integrate over d4q (ignoring
surface terms which formally arise due to the logarithmic divergence) :

16π2λ−1 = ln
6Λ2

6m2
q − M2

d

− 1 ≡ 16π2h(Md), (5.5)

thus defining a diquark ‘self-energy’ function h(M) where the ‘on-shell’ value is M = Md.
Eq.(5.5) also provides a determining equation for the NJL strength parameter λ in terms
of the ‘diquark’ mass Md and the 4D cut-off parameter Λ. This result is clearly 4D
invariant, a feature that characterizes the tenets of the NJL model [17].

5.2 NJL-qqq Bound State Problem

We now set up the corresponding NJL-qqq problem under the same q − q contact inter-
action strength λ. Using the same notation for the various 4-momenta and propagators
as listed in Sec.3, the 4D wave function Φ(ξ, η; P ) expressed in terms of any of the S3

invariant pairs (ξi, ηi) of internal 4-momenta satisfies the BSE:

i(2π)4Φ(ξ, η; P ) =
∑

123

λ∆1
−1∆2

−1

∫

d4q′
12

Φ(ξ3

′, η3; P ) (5.6)

where the arguments of Φ on the LHS are not-indexed since it is S3-symmetric as a whole,
while those on the RHS are indexed in order to indicate which subsystem is in pairwise
interaction (see explanation in Sec.3). The solution of this equation may be read off from
the observation that the integration w.r.t. q′

12
=

√
3ξ′

3
/2 leaves the respective integrals as

functions of ηi only, where i = 1, 2, 3. Thus [2]

Φ(ξ, η; P ) =
∑

123

∆1
−1∆2

−1F (η3) (5.7)

where F is a function of a single variable ηi. Next, plugging back the solution (5.7) into
the main equation (5.6), gives the following integral equation in a single variable η3, as a
routine procedure applicable to separable potentials [2] (see also [34b]) :

(h(Md) − h(M12))F (η3) = −i(2π)−4∆−1

3

∫

d4q′
12

[F (η′

2
)∆′−1

1
+ (1 ↔ 2)] (5.8)

We note in passing that the cut-off parameter Λ drops out from the LHS, as may be
checked by substitution for h(M) from (5.5). This means that the 4D diquark propagator
(h(Md)−h(M12))

−1 is formally independent of the cut-off Λ, in this simplified NJL model.
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Next, the meaning of the function F (η) can be inferred from an inspection of eq.(5.8),
on similar lines to the 3D [2] or 4D [34b,c] studies: F (η3) is the 4D ‘quark(3)-diquark(12)’
wave function which is generated by an exchange force represented by the propagators ∆′−1

1

and ∆′−1

2 in the first and second terms on the RHS respectively. And the baryon-qqq vertex
function V3 corresponding to a break-up of the baryon into quark(3) and diquark (12) may
be identified by multiplying this quantity with the product of the inverse propagators of
quark(3) and diquark(12):

V3 ≡ V (η3) = ∆3f(η3)F (η3) (5.9)

where the diquark inverse propagator is reexpressed as

f(η3) = h(Md) − h(M12) = (4π)−2 ln
6m2

q + η2

3
− 4M2

B/9

6m2
q − M2

d

, (5.10)

making use of eq.(5.5) and the kinematical relation ∆i = m2

q +η2

i −M2

B/9, where MB is the
mass of the bound qqq state, and i = 1, 2, 3. The quantity V3 of eq(5.9) may be compared
directly (except for normalization) with the corresponding ‘3D-4D-BSE’ quantity (4.10).

5.3 Solution of the Bound qqq State Eq.(5.8)

We now turn to the Lorentz structure of the NJL-qqq equation (5.8), as well as an ap-
proximate analytic solution for the energy eigenvalues of the bound qqq states. To that
end we substitute (5.9) in (5.8) to give an integral equation for V (η3), with η′

2
≡ η for

short:

V (η3) = −2i(2π)−4

∫

d4ηV (η)f−1(η) × (m2

q + η2 − M2

B/9)−1(m2

q + (η3 + η)2 − M2

B/9)−1

(5.11)
where the factor 2 on the RHS signifies equal effects of the two terms on the RHS of
(5.8). For a bound state solution of this equation, with MB < Md + mq, the singularity
structures permit a Wick rotation η0 → iη0 which converts η into a Euclidean variable ηE .
This shows without further ado that eq.(5.11) is 4D-invariant just like its qq counterpart
eq.(5.3). This is not quite the same thing as the old result [13] on O(4)-like spectra with
harmonic confinement in the limit of infinite quark mass [13], since this NJL-Faddeev
model of contact interaction, patterned after similar approaches [34], lacks a confining
interaction, so that although in principle eq.(5.11) predicts a spectrum of bound states at
the qqq level (starting with NJL(contact) pairwise interactions), such spectra cannot be a
realistic representation of the actual hadron spectra [12]. (Note that the 4D form factors
employed in some NJL interactions [34b] for convergence of the integrals, do not have
the significance of confinement; see however other attempts at confinement [40]). In the
absence of a confining mechanism, most such NJL-Faddeev models [34] have effectively
produced only one non-trivial bound state - the nucleon/Delta. We now show how this
comes about via Wick rotation in (5.11).

For an approximate analytic solution of eq.(5.11), note that the logarithmic function
f(η) in the integral appearing on the right is slowly varying, so that not much error
is incurred by taking it out of the integral and replacing it with an average value <
f(η) >. It is now possible to ‘match’ both sides with an effectively constant V (η), provided

any further logarithmic dependence on η is also similarly treated for consistency. The
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integral is now exactly of the type (5.3), i.e., logarithmically divergent, and can be handled
successively by Wick rotation, Feynman auxiliary variable u, and a translation. The result
is again of the form (5.5), and after cancelling out the factors V (η3) and V (η) from both
sides, the eigenvalue equation reads:

< f(η) >= 2(4π)−2[ln
Λ2

< η2
3/6 > +m2

q − M2

B/27
− 1] (5.12)

To simplify this equation, we express all quantities in terms of the h(M) functions given
in (5.5) and (5.10), and ignore the difference between η = η′

2
and η3 inside the logarithms,

to give
h(Md) − h(M12) = 2h(M12);⇒ λ−1 = h(Md) = 3h(M12) (5.13)

The last equation brings out clearly the fact that the baryon binding comes about from
three pairs of qq interaction, albeit off-shell, since the function < M2

12
>=< η2

3
> −4M2

B/9
still depends on the (average) value of η2. The qualitative features are thus on expected
lines, but this oversimplified model was not intended to be pushed for an actual fit to the
nucleon mass (which at minimum requires the introduction of spin-isospin d.o.f.[34]), be-
yond the general feature of a quark-diquark structure that characterizes the NJL-Faddeev
approach [34], as expected from any separable potential [2], of which the NJL model
is a special case. The ‘bosonization’ approaches [36] also bring out the quark-diquark
structure, but in a more general (non-linear) fashion [36b].

5.4 Comparison of NJL-Faddeev with 3D-4D-BSE

We end this section with a comparison between the vertex functions (4.10) of 3D-4D-BSE
[33], and (5.9) of NJL-Faddeev [34], which reflect the corresponding differences in their
respective dynamical premises. The NJL-Faddeev form (5.9) of V3 is explicitly Lorentz
invariant, with full 4D Hilbert space information built into its structure. Its quark-
diquark structure merely reflects the ‘separable’ nature of the NJL model [17]. There is
no special motivation here for a 3D reduction of the types [5-8] described in Sec.1. The
4D (Lorentz-invariant) structure is in-built in NJL-Faddeev [34], as seen from eqs(5.4-5)
for the qq state, and its qqq counterpart in eq.(5.8).

In contrast, the vertex function (4.10) obtained from the 3D-4D-BSE formalism [9-11]
is merely Lorentz covariant due to the 3D kernel support, but the derivation is otherwise
quite general (much more than NJL-Faddeev) since it is valid for any form of the kernel
as long as it is 3D in content. This leads to an exact 3D reduction of the (4D) BSE whose
formal solution is a 3D wave function φ(ξ̂, η̂), a function of two independent 3-momenta
[32], in contrast to its NJL counterpart F (η3) in (5.9) which is a function of a single
4-momentum η3. The denominator function D(q̂12) of (4.10) similarly is a 3D counterpart
of the corresponding 4D inverse propagator f(η3) in (5.9). Finally the big radical in (4.10)
corresponds to the inverse propagator ∆3 in (5.9), but has a vastly more involved structure
which may be traced back to the difference in their respective dynamical premises which
we now seek to account for analytically.

While the premises of NJL-Faddeev [34] are traceable to the contact 4-fermion inter-
action [17], those of 3D-4D-BSE [9-11] are based on an interplay of the 3D and 4D BSE
forms with an otherwise general but 3D kernel support. To reconcile the two approaches
in a mathematically consistent way, note first that while the ‘zero extention’ in the tem-
poral direction is common to both, NJL-Faddeev has also a zero spatial extension, but
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3D-4D-BSE has ‘normal’ spatial extension. To reduce the latter to the former, all that
is required is to set its spatial extension to zero ! This is simply achieved (in momentum
space) by setting its 3D kernel K equal to a constant. For, as is easily checked in this
limit, the structures of the various 4D equations in Secs.2-4 reduce exactly to their 4D
NJL counterparts in Sec.5.(1-3), via the simple identification K = λ, so that there is
no more need to make 3D reductions or 4D reconstructions! [The conversion from the
Green’s function form of Secs.2-4 to the wave function language of secs.5.(1-3) is trivial].
Indeed the formulation of NJL-Faddeev in this Section has been made in close enough
correspondence with that of 3D-4D-BSE to bring out the transparency of the parallelism.

After this basic check between these two formalisms, it is clear that the ambiguity in
the reconstruction of the 4D wave function from the 3D form vanishes in the K = const
limit, so that the same is directly attributable to the (mere Lorentz covariant) 3D form
of the BSE kernel. Indeed from the derivation in Sec.4 it is clear that the 1D δ-function
in (4.10) fills up an information gap in the reconstruction from a truncated 3D to the full
4D Hilbert space in the simplest possible manner, while satisfying a vital self-consistency
check by reproducing the full structure (3.12) of the 3D BSE. This already lends sufficiency

to the ansatz (4.4) which leads to (4.10). As to its ‘necessity’, this ansatz has certain
desirable properties like on-shell propagation of the spectator in between two successive
interactions, as well as an explicit symmetry in the p3 and p3

′ momenta. There is a fair
chance of its uniqueness within some general constraints, but so far we have not been able
to prove this.

The other question concerns the compatibility of the 1D δ- function in (4.10) with the
standard requirement of connectedness [3-4]. Both the δ-function and the ∆3F propaga-
tor appear in rational forms in the 4D Green’s function, eq.(4.7), reflecting a free on-shell
propagation of the spectator between two vertex points. The square root feature in the
baryon-qqq vertex function (4.10) is a technical artefact resulting from equal distribution
of this singulariity between the initial and final state vertex points, and has no deeper sig-
nificance. Furthermore, as the steps in Sec.3 indicate, the three-body connectedness has
already been achieved at the 3D level of reduction, so the ‘physics’ of this singularity, gen-
erated via eq.(4.4), must be traced to some mechanism other than a lack of connectedness
[3,4] in the 3-body scattering amplitude. A plausible analogy is to a sort of (Fermi-like)
‘pseudopotential’ of the type employed to simulate the effect of chemical binding in the
coherent scattering of neutrons from a hydrogen molecule in connection with the deter-
mination of the singlet n − p scattering length [38]. Such δ-function potentials have no
deeper significance other than depicting the vast mismatch in the frequency scales of nu-
clear and molecular interactions. In the present case, the instantaniety in time of the
pairwise interaction kernel in an otherwise 4D Hilbert space causes a similar mismatch,
needing a 1D ]delta-function to fill the gap. And just as the ‘pseudo-potential’ in the
above example [38] does not have any observable effect, the singularity under radicals in
(4.10) will not show up in any physical amplitude for hadronic transitions via quark loops,
since the Green’s functions (4.7) involve both the δ- function and the propagator ∆3F in
rational forms before the relevant quark loop integrations over them are performed.

As to the wider ramifications on spectroscopy, the L-excited qqq states that charac-
terize the hadron spectrum, are effectively absent in the NJL-Faddeev eq.(5.11), unlike in
3D-4D-BSE [31-32] where they do. On the other hand, both vertex functions (4.10) and
(5.9) are perfectly capable of generating amplitudes for baryonic transitions via quark-
diquark loop integrals, as ahown with NJL-Faddeev [41] for items such as axial coupling
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constants, nucleon magnetic moments and the π − N σ-term, and with 3D-4D-BSE for
similar items [42,43].

6 Discussion and Summary

We first recapitulate the perspective on 3D reduction of the BSE, outlined in sec.(1.2): It
involves both conceptual (simultaneity of constituents in a bound state) and observational
(O(3)-like spectra [12]) issues. In this respect, the traditional 3D approaches to the BSE
[5-8] work with normal 4D kernel support but manipulate the associated propagators in
the 4D BSE in various ways [6-8] to reduce it to a 3D form. There is no formal problem
of compatibility with the observed O(3) spectra [12] in such qqq approaches, except that,
to the author’s knowledge, there is little evidence so far of such methods going beyond
the 2-quark level. Anyhow, in such methods, the reduced 3D BSE represents a fresh
starting point of the dynamics, and there is no going back to its earlier 4D form. Because
of this reason, one does not see in these approaches [6-8] such unorthodox radicals as in
(4.7-10) which characterizes the alternative approach [9,10] based on the Markov-Yukawa
Transversality Condition [11]: It postulates a 3D support to the BSE kernel in a covariant
fashion by demanding the internal 4-momenta to be transverse to the total 4-momentum of
the composite hadron, and allows an exact 3D reduction of the original 4D BSE [9-10], thus
automatically ensuring O(3)-spectra. More importantly, it allows an exact reconstruction
of the 4D BSE amplitude without extra charge, so that both BSE forms are completely
equivalent and therefore simultaneously available for both 3D spectroscopy and 4D quark-
loop amplitudes in a ‘two-tier’ fashion [14]. (This was shown for the 2-quark problem some
years ago [9], and the present exercise [33] is for the corresponding 3-quark problem).

6.1 Comparison with Other 4D Approaches: Spectroscopy

The principal results of this paper on the structure of the 3D-4D-BSE formalism [9,33,37]
for the qqq problem are contained in eqs(4.7-10). For comparison with other contemporary
approaches to the qqq problem, we have chosen for explicit display a simplified form of
the 4D NJL-Faddeev model [34], which nevertheless retains its principal features, and
outlined in Sec.5 the derivation of its main results through a formulation designed to bring
out the parallelism with 3D-4D-BSE of Secs.(2-4) in point-wise details. In particular,
the equations of 3D-4D-BSE match exactly those of NJL-Faddeev by setting the BSE
kernel equal to a constant. This calibration ensures that any ambiguity inherent in the
reconstruction of the 4D baryon- qqq vertex function in Sec.4 fully disappears in this zero
range limit, so that the difference between these 2 approaches may be directly attributed
to the finite spatial range of the 3D-4D-BSE formulation. The respective vertex functions
also stand a close comparison, except for the 2-body (quark-diquark) structure of NJL-
Faddeev (due to the separable interaction [2]), versus the genuine 3-body structure of
3D-4D BSE. The only item of dissimilarity is in respect of the singularity factor under
radicals in (4.10), vis-a-vis the inverse propagator ∆3 of the spectator in (5.9). This
has been accounted for in sec.(5.4), mathematically through self-consistency checks, and
physically by an analogy with psudopotentials of the type employed for coherent scattering
of slow neutrons from hydrogen molecules [38], with no observable effects. In particular,
the 1D δ-function in no way implies a lack of connectedness [3-4] in the qqq amplitude.
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As regards spin, the extension of the above formalism to fermion quarks is a straight-
forward process amounting to the replacement of ∆F = −i∆−1 by the corresponding
SF -functions, as has been described elsewhere [42,37]. In particular, the fermion vertex
function has recently been applied to the problem of proton-neutron mass difference [43]
via quark loop integrals, to bring out the practicability of its application without para-
metric uncertainties, since the entire formalism is linked all the way from spectroscopy to
hadronic transition amplitudes [14] via quark-loops.

In sec.(1.2) we have attempted briefly to set this 3D-4D BSE-SDE approach in the
physical context of other 4D QCD-motivated BSE-SDE approaches [21,16] which are all
governed by DBχS on the one hand, and the large NC limit on the other. These are
more general than the contact NJL model [17,34] since, unlike in [17,34], their non-local
kernel structures allow incorporation of confinement for prediction of L-excited hadrons.
Our vector-type (gluon-like) kernel [30] for both the perturbative and non-perturbative
QCD regimes gives it a chirally invariant look at the 4-quark Lagrangian level, and with
the constituent mass mq ‘understood’ via DBχS [15], fits in quite well within a broader
BSE-SDE scenario [21,16], except for its hybrid 3D-4D content [9].

This last brings us to the spectroscopy implications of 3D-4D-BSE vis-a-vis other
regular 4D BSE models [21,16,34,36]. Thus NJL-Faddeev [34] supports one non-trivial
bound state - the nucleon (see Sec.5), in the absence of a confinement mechanism, although
a separable qq interaction per se does not rule out excited states at the 3-body level. The
solitonic baryon models [29,35] also have similar predictions. In contrast, 4D BSE’s [16]
with their local 4D interaction kernels, have in principle the capacity to predict L-excited
states as well, except that their actual applications to qq̄ mesons have so far not gone
beyond the ground L = 0 states, albeit for many flavour/spin combinations [16], while
the qqq spectroscopy of such BSE-SDE models [16] is not yet in sight. In this regard, the
predictions of such models [16] on genuinely L-excited spectra would be of considerable
interest for resolving the old issue of O(4)-like spectra found within a Wick-rotated BSE
formalism under harmonic confinement [13].

In contrast, the 3D-4D-BSE formalism [9,33] seems capable of encompassing both 3D
spectroscopy [31-32] and 4D matrix elements within a common dynamical framework.
The only cost factor is the information gap in the reconstruction of the 4D vertex in
terms of 3D ingredients; the 1D δ-function in the baryon-qqq vertex function, eq.(4.10),
fills up the gap, and is accounted for in detail in sec.(5.4). Another positive aspect of
the 3D-4D formalism lies in the generality and flexibility of its 3D kernel structure, since
the 3D-4D interconnection [9,33] does not depend on a precise knowledge of its functional
form. And with its dynamics already rooted in spectroscopy [31-32], it has so far given
parameter-free predictions on magnetic moments [42] as well as the n− p mass difference
[43], the latter being 1.28 MeV (vs. expt 1.29).

Yet another type of approach to the qqq problem, as available in the literature, con-
cerns parametric representations attuned to QCD-sum rules [44], effective Lagrangians for
hadronic transitions to “constituent” quarks, with ad hoc assumptions on the hadron-qqq
form factor [45], similar (parametric) ansatze for the hadron- quark-diquark form factor
[46]; or more often simply direct gaussian parametrizations for the qqq wave functions
as the starting point of the investigation [47]. Such approaches are often quite effective
for the investigations of some well-defined sectors of hadron physics with quark degrees
of freedom, but are in general much less predictive than dynamical-equation-based meth-
ods like NJL- Faddeev [34] or 3D-4D-BSE [33], when extended beyond their immediate
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domains of applicability.

6.2 Summary and Conclusion

To summarise, this work arose out of the need for a formal demonstration [33] of a semi-
intuitive ansatz [37] for the reconstruction of the 4D baryon-qqq vertex function in terms
of 3D ingredients, as in an earlier work for the 2-quark case case [9], under conditions
of a covariant 3D support to the pairwise BS kernel. This has been viewed as a self-
contained mathematical problem in its own right for an otherwise general 3D kernel,
in the hope that the rich potential of such approaches as the 3D-4D-BSE formalism to
access both spectroscopy and quark-loop amplitudes, under a common umbrella for 2-
and 3-quark hadrons, will prove useful to others wishing to explore similar variants of
the Transversality Principle [11]. The unfinished task in the 3D-4D programme has now
been completed via Green’s function techniques for both the 2- and 3- body problems,
with a prior calibration to the 2-body case. In the process, the loss of Hilbert space
information involved in the 4D reconstruction has been made up with the help of certain
1D δ-functions signifying on-shell propagation of the spectator #3 between two successive
interactions of the 12-pair, but which in no way violate connectivity [3,4]. The central
result, eq.(4.10), for the reconstructed 4D vertex function [33], has been fully accounted
for through a detailed comparison with the structure of the NJL-Faddeev model [34].

The entire approach in the programme has been conceived with due emphasis on the
need to include the spectroscopy sector as an integral part of any ‘dynamical equation
based’ approach. This perspective is hardly new, having been set more than 25 years ago
by none other than Feynman et al [48], but can certainly stand a reiteration.

The initial version of this work [33] was written at the International Centre for The-
oretical Physics during a short visit by the author in 1996 end. This hospitality of the
Director, Prof.M.A.Virasoro, is gratefully acknowledged. The author is grateful to some
critics of [33] for bringing to his notice related approaches like NJL-Faddeev to his at-
tention and suggesting a critical comparison with them, which led to the present version.
He also appreciates help from Dr. Usha Kulshreshtha in finding some key references on
NJL-Faddeev models.
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