218 research outputs found

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.

    On-site Coulomb interaction and the magnetism of (GaMn)N and (GaMn)As

    Full text link
    We use the local density approximation (LDA) and LDA+U schemes to study the magnetism of (GaMn)As and (GaMn)N for a number of Mn concentrations and varying number of holes. We show that for both systems and both calculational schemes the presence of holes is crucial for establishing ferromagnetism. For both systems, the introduction of UU increases delocalization of the holes and, simultaneously, decreases the p-d interaction. Since these two trends exert opposite influences on the Mn-Mn exchange interaction the character of the variation of the Curie temperature (TC_C) cannot be predicted without direct calculation. We show that the variation of TC_C is different for two systems. For low Mn concentrations we obtain the tendency to increasing TC_C in the case of (GaMn)N whereas an opposite tendency to decreasing TC_C is obtained for (GaMn)As. We reveal the origin of this difference by inspecting the properties of the densities of states and holes for both systems. The main body of calculations is performed within a supercell approach. The Curie temperatures calculated within the coherent potential approximation to atomic disorder are reported for comparison. Both approaches give similar qualitative behavior. The results of calculations are related to the experimental data.Comment: to appear in Physical Review

    Wavelet-Based Linear-Response Time-Dependent Density-Functional Theory

    Full text link
    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine

    Ferromagnetic Semiconductors: Moving Beyond (Ga,Mn)As

    Full text link
    The recent development of MBE techniques for growth of III-V ferromagnetic semiconductors has created materials with exceptional promise in spintronics, i.e. electronics that exploit carrier spin polarization. Among the most carefully studied of these materials is (Ga,Mn)As, in which meticulous optimization of growth techniques has led to reproducible materials properties and ferromagnetic transition temperatures well above 150 K. We review progress in the understanding of this particular material and efforts to address ferromagnetic semiconductors as a class. We then discuss proposals for how these materials might find applications in spintronics. Finally, we propose criteria that can be used to judge the potential utility of newly discovered ferromagnetic semiconductors, and we suggest guidelines that may be helpful in shaping the search for the ideal material.Comment: 37 pages, 4 figure

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems

    Full text link
    Local-spin-density functional calculations may be affected by severe errors when applied to the study of magnetic and strongly-correlated materials. Some of these faults can be traced back to the presence of the spurious self-interaction in the density functional. Since the application of a fully self-consistent self-interaction correction is highly demanding even for moderately large systems, we pursue a strategy of approximating the self-interaction corrected potential with a non-local, pseudopotential-like projector, first generated within the isolated atom and then updated during the self-consistent cycle in the crystal. This scheme, whose implementation is totally uncomplicated and particularly suited for the pseudopotental formalism, dramatically improves the LSDA results for a variety of compounds with a minimal increase of computing cost.Comment: 18 pages, 14 figure

    Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models

    Get PDF
    Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients. We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple mathematical models.We developed a general mathematical model encompassing the basic interactions of a vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided into each patient's training set and his validation set. The training set, used for model personalization, contained the patient's initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set. The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients (the coefficient of determination between the predicted and observed PSA values was R(2) = 0.972). The model could not account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients.Using a few initial measurements, we constructed robust patient-specific models of PCa immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and feasibility of individualized model-suggested immunotherapy protocols

    Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    Get PDF

    Mathematical models for immunology:current state of the art and future research directions

    Get PDF
    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years

    Ab initio studies of structures and properties of small potassium clusters

    Full text link
    We have studied the structure and properties of potassium clusters containing even number of atoms ranging from 2 to 20 at the ab initio level. The geometry optimization calculations are performed using all-electron density functional theory with gradient corrected exchange-correlation functional. Using these optimized geometries we investigate the evolution of binding energy, ionization potential, and static polarizability with the increasing size of the clusters. The polarizabilities are calculated by employing Moller-Plesset perturbation theory and time dependent density functional theory. The polarizabilities of dimer and tetramer are also calculated by employing large basis set coupled cluster theory with single and double excitations and perturbative triple excitations. The time dependent density functional theory calculations of polarizabilities are carried out with two different exchange-correlation potentials: (i) an asymptotically correct model potential and (ii) within the local density approximation. A systematic comparison with the other available theoretical and experimental data for various properties of small potassium clusters mentioned above has been performed. These comparisons reveal that both the binding energy and the ionization potential obtained with gradient corrected potential match quite well with the already published data. Similarly, the polarizabilities obtained with Moller-Plesset perturbation theory and with model potential are quite close to each other and also close to experimental data.Comment: 33 pages including 10 figure
    corecore