472 research outputs found
Copper(II) and Cobalt(ll) Complexes with L-Threonine and L-allo- Threonine: Potentiometric and CD-Spectroscopic Study
Stability constants of cobalt(II) and copper(II) complexes with
L-threonine and L-aHo-threonine as well as ligands\u27 acid dissociation
constants were determined by potentiometry. Circular-dichroisrrt
spectra of the investigated complex solutions were recorded in a
broad pH range and resolved into the contributions of individual
dichroic species applying a recently developed regression procedure
with iterative weighting. Two new deprotonated cobalt(II)
complexes, [Co(Thr)2H _ 1]- and [Co(aThrl2H - ir, were detected and
characterized by stability constants and CD spectra. New CD bands
were found in the UV region for the complexes of both metals.
Tentative structure types for the deprotonated as well as for their
parent complexes were inferred from the stability data
The mechanism of caesium intercalation of graphene
Properties of many layered materials, including copper- and iron-based
superconductors, topological insulators, graphite and epitaxial graphene can be
manipulated by inclusion of different atomic and molecular species between the
layers via a process known as intercalation. For example, intercalation in
graphite can lead to superconductivity and is crucial in the working cycle of
modern batteries and supercapacitors. Intercalation involves complex diffusion
processes along and across the layers, but the microscopic mechanisms and
dynamics of these processes are not well understood. Here we report on a novel
mechanism for intercalation and entrapment of alkali-atoms under epitaxial
graphene. We find that the intercalation is adjusted by the van der Waals
interaction, with the dynamics governed by defects anchored to graphene
wrinkles. Our findings are relevant for the future design and application of
graphene-based nano-structures. Similar mechanisms can also play a role for
intercalation of layered materials.Comment: 8 pages, 7 figures in published form, supplementary information
availabl
Role of disclinations in determining the morphology of deformable fluid interfaces
We study the equilibrium shapes of vesicles, with an in-plane nematic order,
using a Monte-Carlo scheme and show that highly curved shapes, like tubes and
discs, with a striking similarity to the structures engendered by certain
curvature sensing peripheral membrane proteins, can be spontaneously generated
by anisotropic directional curvature with nematic disclinations playing and
important role. We show that the coupling between nematic order and local
curvature could lead to like defects moving towards each other and unlike
defects moving away, in turn leading to tube formation. Thermally induced
defect pair production lead to branched tubular structures. It is also shown
that helical arrangement of the membrane tubes, with nematic field spiraling
around it, is a dominant soft mode of the system.Comment: 6 Figures; Soft Matter, Advance Article 201
Annihilation of edge dislocations in smectic A liquid crystals
This paper presents a theoretical study of the annihilation of edge dislocations in the same smectic plane in a bulk smectic-A phase. We use a time-dependent Landau-Ginzburg approach where the smectic ordering is described by the complex order parameter psi( r--> ,t) =eta e(iphi) . This quantity allows both the degree of layering and the position of the layers to be monitored. We are able to follow both precollision and postcollision regimes, and distinguish different early and late behaviors within these regimes. The early precollision regime is driven by changes in the phi ( r--> ) configuration. The relative velocity of the defects is approximately inversely proportional to the interdefect separation distance. In the late precollision regime the symmetry changes within the cores of defects also become influential. Following the defect collision, in the early postcollision stage, bulk layer order is approached exponentially in time. At very late times, however, there seems to be a long-time power-law tail in the order parameter fluctuation relaxation
Trapping Surface Electrons on Graphene Layers and Islands
We report the use of time- and angle-resolved two-photon photoemission to map
the bound, unoccupied electronic structure of the weakly coupled
graphene/Ir(111) system. The energy, dispersion, and lifetime of the lowest
three image-potential states are measured. In addition, the weak interaction
between Ir and graphene permits observation of resonant transitions from an
unquenched Shockley-type surface state of the Ir substrate to graphene/Ir
image-potential states. The image-potential-state lifetimes are comparable to
those of mid-gap clean metal surfaces. Evidence of localization of the excited
electrons on single-atom-layer graphene islands is provided by
coverage-dependent measurements
Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria
We demonstrate and explain a simple and efficient way to remove gas bubbles
from liquid-filled microchannels, by integrating a hydrophobic porous membrane
on top of the microchannel. A prototype chip is manufactured in hard,
transparent polymer with the ability to completely filter gas plugs out of a
segmented flow at rates up to 7.4 microliter/s per mm2 of membrane area. The
device involves a bubble generation section and a gas removal section. In the
bubble generation section, a T-junction is used to generate a train of gas
plugs into a water stream. These gas plugs are then transported towards the gas
removal section, where they slide along a hydrophobic membrane until complete
removal. The system has been successfully modeled and four necessary operating
criteria have been determined to achieve a complete separation of the gas from
the liquid. The first criterion is that the bubble length needs to be larger
than the channel diameter. The second criterion is that the gas plug should
stay on the membrane for a time sufficient to transport all the gas through the
membrane. The third criterion is that the gas plug travel speed should be lower
than a critical value: otherwise a stable liquid film between the bubble and
the membrane prevents mass transfer. The fourth criterion is that the pressure
difference across the membrane should not be larger than the Laplace pressure
to prevent water from leaking through the membrane
Characteristics associated with quality of life among people with drug-resistant epilepsy
Quality of Life (QoL) is the preferred outcome in non-pharmacological trials, but there is little UK population evidence of QoL in epilepsy. In advance of evaluating an epilepsy self-management course we aimed to describe, among UK participants, what clinical and psycho-social characteristics are associated with QoL. We recruited 404 adults attending specialist clinics, with at least two seizures in the prior year and measured their self-reported seizure frequency, co-morbidity, psychological distress, social characteristics, including self-mastery and stigma, and epilepsy-specific QoL (QOLIE-31-P). Mean age was 42 years, 54% were female, and 75% white. Median time since diagnosis was 18 years, and 69% experienced ≥10 seizures in the prior year. Nearly half (46%) reported additional medical or psychiatric conditions, 54% reported current anxiety and 28% reported current depression symptoms at borderline or case level, with 63% reporting felt stigma. While a maximum QOLIE-31-P score is 100, participants’ mean score was 66, with a wide range (25–99). In order of large to small magnitude: depression, low self-mastery, anxiety, felt stigma, a history of medical and psychiatric comorbidity, low self-reported medication adherence, and greater seizure frequency were associated with low QOLIE-31-P scores. Despite specialist care, UK people with epilepsy and persistent seizures experience low QoL. If QoL is the main outcome in epilepsy trials, developing and evaluating ways to reduce psychological and social disadvantage are likely to be of primary importance. Educational courses may not change QoL, but be one component supporting self-management for people with long-term conditions, like epilepsy
- …