34 research outputs found

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Fil: Keret, Ophir. University of California; Estados UnidosFil: Staffaroni, Adam M.. University of California; Estados UnidosFil: Ringman, John M.. University of Southern California; Estados UnidosFil: Cobigo, Yann. University of California; Estados UnidosFil: Goh, Sheng Yang M.. University of California; Estados UnidosFil: Wolf, Amy. University of California; Estados UnidosFil: Allen, Isabel Elaine. University of California; Estados UnidosFil: Salloway, Stephen. Brown University; Estados UnidosFil: Chhatwal, Jasmeer. Harvard Medical School; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Reyes Dumeyer, Dolly. Columbia University; Estados UnidosFil: Bateman, Randal J.. University of Washington; Estados UnidosFil: Benzinger, Tammie L.S.. University of Washington; Estados UnidosFil: Morris, John C.. University of Washington; Estados UnidosFil: Ances, Beau M.. University of Washington; Estados UnidosFil: Joseph Mathurin, Nelly. University of Washington; Estados UnidosFil: Perrin, Richard J.. University of Washington; Estados UnidosFil: Gordon, Brian A.. University of Washington; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Vöglein, Jonathan. Ludwig Maximilians Universitat; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Jucker, Mathias. German Center for Neurodegenerative Diseases; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: la Fougère, Christian. Eberhard Karls Universität Tübingen; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Martins, Ralph N.. Cooperative Research Centres Australia; Australia. University of Western Australia; Australia. Edith Cowan University; Australia. Australian Alzheimer's Research Foundation; Australia. Macquarie University; AustraliaFil: Sohrabi, Hamid R.. University of Western Australia; Australia. Macquarie University; Australia. Australian Alzheimer's Research Foundation; Australia. Cooperative Research Centres Australia; Australia. Edith Cowan University; AustraliaFil: Taddei, Kevin. Australian Alzheimer's Research Foundation; Australia. Edith Cowan University; AustraliaFil: Villemagne, Victor L.. Austin Health; AustraliaFil: Schofield, Peter R.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Brooks, William S.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Fulham, Michael. Royal Prince Alfred Hospital; AustraliaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: Allegri, Ricardo Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Instituto de Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentin

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer\u27s disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer\u27s disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score\u27s predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    Fleas as parasites of the family Canidae

    Get PDF
    Historically, flea-borne diseases are among the most important medical diseases of humans. Plague and murine typhus are known for centuries while the last years brought some new flea-transmitted pathogens, like R. felis and Bartonella henselae. Dogs may play an essential or an accidental role in the natural transmission cycle of flea-borne pathogens. They support the growth of some of the pathogens or they serve as transport vehicles for infected fleas between their natural reservoirs and humans. More than 15 different flea species have been described in domestic dogs thus far. Several other species have been found to be associated with wild canids. Fleas found on dogs originate from rodents, birds, insectivores and from other Carnivora. Dogs therefore may serve as ideal bridging hosts for the introduction of flea-borne diseases from nature to home. In addition to their role as ectoparasites they cause nuisance for humans and animals and may be the cause for severe allergic reactions

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine

    Full text link

    The sagging rope sign: a critical appraisal

    No full text
    Certain features of the sagging rope sign recently analysed by Apley and Weintroub (1981) are examined in detail. Evidence is presented to show that the line is a radiological shadow cast by the lateral edge of a severely deformed femoral head rather than a condensation of the spongiosa within the neck. An explanation is offered to explain the common association of the presence of this radiological sign with premature epiphysial fusion. <br/

    Elucidating mechanisms for insect body size:partial support for the oxygen-dependent induction of moulting hypothesis

    No full text
    Abstract Body size is a key life history trait, and knowledge of its mechanistic basis is crucial in life history biology. Such knowledge is accumulating for holometabolous insects, whose growth is characterised and body size affected by moulting. According to the oxygen-dependent induction of moulting (ODIM) hypothesis, moult is induced at a critical mass at which oxygen demand of growing tissues overrides the supply from the tracheal respiratory system, which principally grows only at moults. Support for the ODIM hypothesis is controversial, partly because of a lack of proper data to explicitly test the hypothesis. The ODIM hypothesis predicts that the critical mass is positively correlated with oxygen partial pressure (PO2) and negatively with temperature. To resolve the controversy that surrounds the ODIM hypothesis, we rigorously test these predictions by exposing penultimate-instar Orthosia gothica (Lepidoptera: Noctuidae) larvae to temperature and moderate PO2 manipulations in a factorial experiment. The relative mass increment in the focal instar increased along with increasing PO2, as predicted, but there was only weak suggestive evidence of the temperature effect. Probably owing to a high measurement error in the trait, the effect of PO2 on the critical mass was sex specific; high PO2 had a positive effect only in females, whereas low PO2 had a negative effect only in males. Critical mass was independent of temperature. Support for the ODIM hypothesis is partial because of only suggestive evidence of a temperature effect on moulting, but the role of oxygen in moult induction seems unambiguous. The ODIM mechanism thus seems worth considering in body size analyses

    Climate change-driven elevational changes among boreal nocturnal moths

    No full text
    Abstract Climate change has shifted geographical ranges of species northwards or to higher altitudes on elevational gradients. These changes have been associated with increases in ambient temperatures. For ectotherms in seasonal environments, however, life history theory relies largely on the length of summer, which varies somewhat independently of ambient temperature per se. Extension of summer reduces seasonal time constraints and enables species to establish in new areas as a result of over-wintering stage reaching in due time. The reduction of time constraints is also predicted to prolong organisms’ breeding season when reproductive potential is under selection. We studied temporal change in the summer length and its effect on species’ performance by combining long-term data on the occurrence and abundance of nocturnal moths with weather conditions in a boreal location at Värriötunturi fell in NE Finland. We found that summers have lengthened on average 5 days per decade from the late 1970s, profoundly due to increasing delays in the onset of winters. Moth abundance increased with increasing season length a year before. Most of the species occurrences expanded upwards in elevation. Moth communities in low elevation pine heath forest and middle elevation mountain birch forest have become inseparable. Yet, the flight periods have remained unchanged, probably due to unpredictable variation in proximate conditions (weather) that hinders life histories from selection. We conclude that climate change-driven changes in the season length have potential to affect species’ ranges and affect the structure of insect assemblages, which may contribute to alteration of ecosystem-level processes
    corecore