1,754 research outputs found

    Does the Number Density of Elliptical Galaxies Change at z<1?

    Full text link
    We have performed a detailed V/Vmax test for a sample of the Canada-France Redshift Survey (CFRS) for the purpose of examining whether the comoving number density of field galaxies changes significantly at redshifts of z<1. Taking into account the luminosity evolution of galaxies which depends on their morphological type through different history of star formation, we obtain \sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were secured by spectroscopy of either absorption or emission lines for the CFRS sample. This indicates that a picture of mild evolution of field galaxies without significant mergers is consistent with the CFRS data. Early-type galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in number at z>0.8 due to the selection bias, thereby causing a fictitious decrease of . We therefore conclude that a reasonable choice of upper bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive evolution for field ellipticals in the CFRS sample, which was rejected by Kauffman, Charlot, & White (1996) without confining the redshift range. However, about 10% of the CFRS sample consists of galaxies having colors much bluer than predicted for irregular galaxies, and their \avmax is significantly larger than 0.5. We discuss this population of extremely blue galaxies in terms of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter

    The spatially resolved Kennicutt-Schmidt relation in the HI dominated regions of spiral and dwarf irregular galaxies

    Full text link
    We study the Kennicutt-Schmidt relation between average star formation rate and average cold gas surface density in the Hi dominated ISM of nearby spiral and dwarf irregular galaxies. We divide the galaxies into grid cells varying from sub-kpc to tens of kpc in size. Grid-cell measurements of low SFRs using H-alpha emission can be biased and scatter may be introduced because of non-uniform sampling of the IMF or because of stochastically varying star formation. In order to alleviate these issues, we use far-ultraviolet emission to trace SFR, and we sum up the fluxes from different bins with the same gas surface density to calculate the average ΣSFR\Sigma_{SFR} at a given value of Σgas\Sigma_{gas}. We study the resulting Kennicutt-Schmidt relation in 400 pc, 1 kpc and 10 kpc scale grids in nearby massive spirals and in 400 pc scale grids in nearby faint dwarf irregulars. We find a relation with a power law slope of 1.5 in the HI-dominated regions for both kinds of galaxies. The relation is offset towards longer gas consumption timescales compared to the molecular hydrogen dominated centres of spirals, but the offset is an order-of-magnitude less than that quoted by earlier studies. Our results lead to the surprising conclusion that conversion of gas to stars is independent of metallicity in the HI dominated regions of star-forming galaxies. Our observed relations are better fit by a model of star formation based on thermal and hydrostatic equilibrium in the ISM, in which feedback driven turbulence sets the thermal pressure.Comment: 11 pages, 7 figures, 5 tables. Accepted for publication in MNRAS Main Journal. For the definitive version visit http://mnras.oxfordjournals.org

    The Color-Magnitude Relation in Coma: Clues to the Age and Metallicity of Cluster Populations

    Get PDF
    We have observed three fields of the Coma cluster of galaxies with a narrow band (modified Stromgren) filter system. Observed galaxies include 31 in the vicinity of NGC 4889, 48 near NGC 4874, and 60 near NGC 4839 complete to M_5500=-18 in all three subclusters. Spectrophotometric classification finds all three subclusters of Coma to be dominated by red, E type (ellipticals/S0's) galaxies with a mean blue fraction, f_B, of 0.10. The blue fraction increases to fainter luminosities, possible remnants of dwarf starburst population or the effects of dynamical friction removing bright, blue galaxies from the cluster population by mergers. We find the color-magnitude (CM) relation to be well defined and linear over the range of M_5500=-13 to -22. After calibration to multi-metallicity models, bright ellipticals are found to have luminosity weighted mean [Fe/H] values between -0.5 and +0.5, whereas low luminosity ellipticals have [Fe/H] values ranging from -2 to solar. The lack of CM relation in our continuum color suggests that a systematic age effect cancels the metallicity effects in this bandpass. This is confirmed with our age index which finds a weak correlation between luminosity and mean stellar age in ellipticals such that the stellar populations of bright ellipticals are 2 to 3 Gyrs younger than low luminosity ellipticals.Comment: 26 pages AAS LaTeX, 6 figures, accepted for publication in A

    A possible observational bias in the estimation of the virial parameter in virialized clumps

    Full text link
    The dynamics of massive clumps, the environment where massive stars originate, is still unclear. Many theories predict that these regions are in a state of near-virial equilibrium, or near energy equi-partition, while others predict that clumps are in a sub-virial state. Observationally, the majority of the massive clumps are in a sub-virial state with a clear anti-correlation between the virial parameter αvir\alpha_{vir} and the mass of the clumps McM_{c}, which suggests that the more massive objects are also the more gravitationally bound. Although this trend is observed at all scales, from massive clouds down to star-forming cores, theories do not predict it. In this work we show how, starting from virialized clumps, an observational bias is introduced in the specific case where the kinetic and the gravitational energies are estimated in different volumes within clumps and how it can contribute to the spurious αvirMc\alpha_{vir}-M_{c} anti-correlation in these data. As a result, the observed effective virial parameter α~eff<αvir\tilde{\alpha}_{eff}<\alpha_{vir}, and in some circumstances it might not be representative of the virial state of the observed clumps.Comment: A&A letter, accepte

    Luminosity Density of Galaxies and Cosmic Star Formation Rate from Lambda-CDM Hydrodynamical Simulations

    Full text link
    We compute the cosmic star formation rate (SFR) and the rest-frame comoving luminosity density in various pass-bands as a function of redshift using large-scale \Lambda-CDM hydrodynamical simulations with the aim of understanding their behavior as a function of redshift. To calculate the luminosity density of galaxies, we use an updated isochrone synthesis model which takes metallicity variations into account. The computed SFR and the UV-luminosity density have a steep rise from z=0 to 1, a moderate plateau between z=1 - 3, and a gradual decrease beyond z=3. The raw calculated results are significantly above the observed luminosity density, which can be explained either by dust extinction or the possibly inappropriate input parameters of the simulation. We model the dust extinction by introducing a parameter f; the fraction of the total stellar luminosity (not galaxy population) that is heavily obscured and thus only appears in the far-infrared to sub-millimeter wavelength range. When we correct our input parameters, and apply dust extinction with f=0.65, the resulting luminosity density fits various observations reasonably well, including the present stellar mass density, the local B-band galaxy luminosity density, and the FIR-to-submm extragalactic background. Our result is consistent with the picture that \sim 2/3 of the total stellar emission is heavily obscured by dust and observed only in the FIR. The rest of the emission is only moderately obscured which can be observed in the optical to near-IR wavelength range. We also argue that the steep falloff of the SFR from z=1 to 0 is partly due to the shock-heating of the universe at late times, which produces gas which is too hot to easily condense into star-forming regions.Comment: 25 pages, 6 figures. Accepted version in ApJ. Substantially revised from the previous version. More emphasis on the comparison with various observations and the hidden star formation by dust extinctio

    The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors

    Get PDF
    Low luminosity radio-loud active galactic nuclei (AGN) are generally found in massive red elliptical galaxies, where they are thought to be powered through gas accretion from their surrounding hot halos in a radiatively inefficient manner. These AGN are often referred to as "low-excitation" radio galaxies (LERGs). When radio-loud AGN are found in galaxies with a young stellar population and active star formation, they are usually high-power radiatively-efficient radio AGN ("high-excitation", HERG). Using a sample of low-redshift radio galaxies identified within the Sloan Digital Sky Survey (SDSS), we determine the fraction of galaxies that host a radio-loud AGN, fRLf_{RL}, as a function of host galaxy stellar mass, MM_*, star formation rate, color (defined by the 4000 \angstrom break strength), radio luminosity and excitation state (HERG/LERG). We find the following: 1. LERGs are predominantly found in red galaxies. 2. The radio-loud AGN fraction of LERGs hosted by galaxies of any color follows a fRLLEM2.5f^{LE}_{RL} \propto M^{2.5}_* power law. 3. The fraction of red galaxies hosting a LERG decreases strongly for increasing radio luminosity. For massive blue galaxies this is not the case. 4. The fraction of green galaxies hosting a LERG is lower than that of either red or blue galaxies, at all radio luminosities. 5. The radio-loud AGN fraction of HERGs hosted by galaxies of any color follows a fRLHEM1.5f^{HE}_{RL} \propto M^{1.5}_* power law. 6. HERGs have a strong preference to be hosted by green or blue galaxies. 7. The fraction of galaxies hosting a HERG shows only a weak dependence on radio luminosity cut. 8. For both HERGs and LERGs, the hosting probability of blue galaxies shows a strong dependence on star formation rate. This is not observed in galaxies of a different color.[abridged]Comment: 7 pages, 6 figure

    Time Evolution of Galaxy Formation and Bias in Cosmological Simulations

    Full text link
    The clustering of galaxies relative to the mass distribution declines with time because: first, nonlinear peaks become less rare events; second, the densest regions stop forming new galaxies because gas there becomes too hot to cool and collapse; third, after galaxies form, they are gravitationally ``debiased'' because their velocity field is the same as the dark matter. To show these effects, we perform a hydrodynamic cosmological simulation and examine the density field of recently formed galaxies as a function of redshift. We find the bias b_* of recently formed galaxies (the ratio of the rms fluctuations of these galaxies and mass), evolves from 4.5 at z=3 to around 1 at z=0, on 8 h^{-1} Mpc comoving scales. The correlation coefficient r_* between recently formed galaxies and mass evolves from 0.9 at z=3 to 0.25 at z=0. As gas in the universe heats up and prevents star formation, star-forming galaxies become poorer tracers of the mass density field. After galaxies form, the linear continuity equation is a good approximation to the gravitational debiasing, even on nonlinear scales. The most interesting observational consequence of the simulations is that the linear regression of the star-formation density field on the galaxy density field evolves from about 0.9 at z=1 to 0.35 at z=0. These effects also provide a possible explanation for the Butcher-Oemler effect, the excess of blue galaxies in clusters at redshift z ~ 0.5. Finally, we examine cluster mass-to-light ratio estimates of Omega, finding that while Omega(z) increases with z, one's estimate Omega_est(z) decreases. (Abridged)Comment: 31 pages of text and figures; submitted to Ap

    The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback

    Full text link
    The properties of the host galaxies of a well-defined sample of 2215 radio-loud AGN with redshifts 0.03 < z < 0.3, defined from the SDSS, are investigated. These are predominantly low radio luminosity sources, with 1.4GHz luminosities of 10^23 to 10^25 W/Hz. The fraction of galaxies that host radio-loud AGN with L(1.4GHz) > 10^23 W/Hz is a strong function of stellar mass, rising from nearly zero below a stellar mass of 10^10 Msun to more than 30% at 5x10^11 Msun. The integral radio luminosity function is derived in six ranges of stellar and black hole mass. Its shape is very similar in all of these ranges and can be well fitted by a broken power-law. Its normalisation varies strongly with mass, as M_*^2.5 or M_BH^1.6; this scaling only begins to break down when the predicted radio-loud fraction exceeds 20-30%. There is no correlation between radio and emission line luminosities for the radio-loud AGN in the sample and the probability that a galaxy of given mass is radio-loud is independent of whether it is optically classified as an AGN. The host galaxies of the radio-loud AGN have properties similar to those of ordinary galaxies of the same mass. All of these findings support the conclusion that the optical AGN and low radio luminosity AGN phenomena are independent and are triggered by different physical mechanisms. Intriguingly, the dependence on black hole mass of the radio-loud AGN fraction mirrors that of the rate at which gas cools from the hot atmospheres of elliptical galaxies. It is speculated that gas cooling provides a natural explanation for the origin of the radio-loud AGN activity, and it is argued that AGN heating could plausibly balance the cooling of the gas over time. [Abridged]Comment: Accepted for publication in MNRAS. LaTeX, 16 pages. Figure 10 is in colou

    The B-Band Luminosity Function of Red and Blue Galaxies up to z=3.5

    Full text link
    We have explored the redshift evolution of the luminosity function of red and blue galaxies up to z=3.5z=3.5. This was possible joining a deep I band composite galaxy sample, which includes the spectroscopic K20 sample and the HDFs samples, with the deep HAB=26H_{AB}=26 and KAB=25K_{AB}=25 samples derived from the deep NIR images of the Hubble Deep Fields North and South, respectively. About 30% of the sample has spectroscopic redshifts and the remaining fraction well-calibrated photometric redshifts. This allowed to select and measure galaxies in the rest-frame blue magnitude up to z3z\sim 3 and to derive the redshift evolution of the B-band luminosity function of galaxies separated by their rest-frame UVU-V color or specific (i.e. per unit mass) star-formation rate. The class separation was derived from passive evolutionary tracks or from their observed bimodal distributions. Both distributions appear bimodal at least up to z2z\sim 2 and the locus of red/early galaxies is clearly identified up to these high redshifts. Both luminosity and density evolutions are needed to describe the cosmological behaviour of the red/early and blue/late populations. The density evolution is greater for the early population with a decrease by one order of magnitude at z23z\sim 2-3 with respect to the value at z0.4z\sim 0.4. The luminosity densities of the early and late type galaxies with MB1M_B1. Indeed while star-forming galaxies slightly increase or keep constant their luminosity density, "early" galaxies decrease in their luminosity density by a factor 56\sim 5-6 from z0.4z\sim 0.4 to z2.53z\sim 2.5-3. A comparison with one of the latest versions of the hierarchical CDM models shows a broad agreement with the observed number and luminosity density evolutions of both populations.Comment: 41 pages, 14 figures, accepted for publication in Ap

    Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Full text link
    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10^8 and 10^9 solar masses with supernova rates of 30, 300, and 3000 per Myr. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, however, we find the loss of enriched material to be much less efficient when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density "chimneys" swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.Comment: 16 pages, 14 figures, to appear in Astrophysical Journal; higher resolution figures available through Ap
    corecore