2,464 research outputs found

    Relativistic BCS-BEC Crossover at Zero Temperature

    Get PDF
    We investigate the BCS-BEC crossover at zero temperature in the frame of a relativistic model. The universality of the BCS-BEC crossover for non-relativistic systems breaks down in relativistic case and the crossover can be induced by changing the density. When the effective scattering length is much less than the fermion Compton wavelength, we recover the non-relativistic result if the gas is initially in non-relativistic state. At ultra-strong coupling where the scattering length is of the order of the Compton wavelength, a new BEC state appears. In this state the condensed bosons become nearly massless and anti-fermions are excited. The behavior of the Goldstone mode and the mixing between the amplitude and phase modes are significantly different in different condensed regions.Comment: 8 pages, 3 figures. V2: typos corrected, a comment on mean field theory adde

    Nucleus-Nucleus Bremsstrahlung from Ultrarelativistic Collisions

    Get PDF
    The bremsstrahlung produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider. Soft photons can be used to infer the rapidity distribution of the outgoing charge. An experimental design is outlined.Comment: 12 pages, 7 figures, uses revte

    Finite Temperature Quark Confinement

    Full text link
    Confinement may be more easily demonstrated at finite temperature using the Polyakov loop than at zero temperature using the Wilson loop. A natural mechanism for confinement can arise via the coupling of the adjoint Polyakov loop to F_{mu nu}^2. We demonstrate this mechanism with a one-loop calculation of the effective potential for SU(2) gluons in a background field consisting of a non-zero color magnetic field and a non-trivial Polyakov loop. The color magnetic field drives the Polyakov loop to non-trivial behavior, and the Polyakov loop can remove the well-known tachyonic mode associated with the Saviddy vacuum. Minimizing the real part of the effective potential leads to confinement, as determined by the Polyakov loop. Unfortunately, we cannot arrange for simultaneous stability and confinement for this simple class of field configurations. We show for a large class of abelian background fields that at one loop tachyonic modes are necessary for confinement.Comment: 15 pages, 7 figures, RevTe

    Bose-Einstein condensation in linear sigma model at Hartree and large N approximation

    Full text link
    The BEC of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall-Jackiw-Tomboulis formalism, we have derived the gap equations for the effective masses of the mesons at finite temperature and finite isospin density. The BEC is discussed in chiral limit and non-chiral limit at Hartree approximation and also at large N approximation.Comment: 11 pages, 9 figure

    Maximum temperature for an Ideal Gas of U^(1)\hat U(1) Kac-Moody Fermions

    Full text link
    A lagrangian for gauge fields coupled to fermions with the Kac-Moody group as its gauge group yields, for the pure fermions sector, an ideal gas of Kac-Moody fermions. The canonical partition function for the U^(1)\hat U(1) case is shown to have a maximum temperature kTM=λ/πkT_{M} = |\lambda| /\pi, where λ\lambda is the coupling of the super charge operator G0G_0 to the fermions. This result is similar to the case of strings but unlike strings the result is obtained from a well-defined lagrangian.Comment: Needs subeqnarray.sty; To be published in Phys. Rev. D, Dec 15, 1995. Some typographical errors have been corrected in the revised versio

    Electromagnetic effects of neutrinos in an electron gas

    Full text link
    We study the electromagnetic properties of a system that consists of an electron background and a neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon self-energy for this system is characterized by the usual transverse and longitudinal polarization functions, and two additional ones which are the focus of our calculations, that give rise to birefringence and anisotropic effects in the photon dispersion relations. Expressions for them are obtained, which depend on the neutrino number densities and involve momentum integrals over the electron distribution functions, and are valid for any value of the photon momentum and general conditions of the electron gas. Those expressions are evaluated explicitly for several special cases and approximations which are generally useful in astrophysical and cosmological settings. Besides studying the photon dispersion relations, we consider the macroscopic electrodynamic equations for this system, which involve the standard dielectric and permeability constants plus two additional ones related to the photon self-energy functions. As an illustration, the equations are used to discuss the evolution of a magnetic field perturbation in such a medium. This particular phenomena has also been considered in a recent work by Semikoz and Sokoloff as a mechanism for the generation of large-scale magnetic fields in the Early Universe as a consequence of the neutrino-plasma interactions, and allows us to establish contact with a specific application in a well defined context, with a broader scope and from a very different point of view.Comment: Revtex 20 page

    Broken phase effective potential in the two-loop Phi-derivable approximation and nature of the phase transition in a scalar theory

    Get PDF
    We study the phase transition of a real scalar phi^4 theory in the two-loop Phi-derivable approximation using the imaginary time formalism, extending our previous (analytical) discussion of the Hartree approximation. We combine Fast Fourier Transform algorithms and accelerated Matsubara sums in order to achieve a high accuracy. Our results confirm and complete earlier ones obtained in the real time formalism [1] but which were less accurate due to the integration in Minkowski space and the discretization of the spectral density function. We also provide a complete and explicit discussion of the renormalization of the two-loop Phi-derivable approximation at finite temperature, both in the symmetric and in the broken phase, which was already used in the real-time approach, but never published. Our main result is that the two-loop Phi-derivable approximation suffices to cure the problem of the Hartree approximation regarding the order of the transition: the transition is of the second order type, as expected on general grounds. The corresponding critical exponents are, however, of the mean-field type. Using a "RG-improved" version of the approximation, motivated by our renormalization procedure, we find that the exponents are modified. In particular, the exponent delta, which relates the field expectation value phi to an external field h, changes from 3 to 5, getting then closer to its expected value 4.789, obtained from accurate numerical estimates [2].Comment: 54 pages, 16 figure

    Cold Quark Matter

    Get PDF
    We perform an O(alpha_s^2) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further non-perturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M~2M_solar, in agreement with current observations. For strange stars, we find maximal masses of M~2.75M_solar and conclude that confirmed observations of compact stars with M>2M_solar would strongly favor the existence of stable strange quark matter.Comment: 51 pages, 11 figures, v2: minor modifications and additional reference

    Virial coefficients from 2+1 dimensional QED effective actions at finite temperature and density

    Full text link
    From spinor and scalar 2+1 dimensional QED effective actions at finite temperature and density in a constant magnetic field background, we calculate the corresponding virial coefficients for particles in the lowest Landau level. These coefficients depend on a parameter theta related to the time-component of the gauge field, which plays an essential role for large gauge invariance. The variation of the parameter theta might lead to an interpolation between fermionic and bosonic virial coefficients, although these coefficients are singular for theta=pi/2.Comment: 10 Latex pages, no figures. Version to appear in MPL

    Possible Evidence of Disoriented Chiral Condensates from the Anomaly in Omega and AntiOmega Abundances at the SPS

    Full text link
    No conventional picture of nucleus-nucleus collisions has yet been able to explain the abundance of Omega and AntiOmega in central collisions between Pb nuclei at 158 A GeV at the CERN SPS. We argue that such a deviation from predictions of statistical thermal models and numerical simulations is evidence that they are produced as topological defects in the form of skyrmions arising from the formation of disoriented chiral condensates. The estimated domain size falls in the right range to be consistent with the so far non-observation of DCC from the distribution of neutral pions.Comment: paper presented at the ICPAQGP-2001, Jaipur, Indi
    corecore