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We perform an Oð�2
sÞ perturbative calculation of the equation of state of cold but dense QCD matter

with two massless and one massive quark flavor, finding that perturbation theory converges reasonably

well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark

mass, and allowing for further nonperturbative effects, our results point to a narrow range where

absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest

that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above

the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid

star masses up to M� 2M�, in agreement with current observations. For strange stars, we find maximal

masses ofM� 2:75M� and conclude that confirmed observations of compact stars withM> 2M� would

strongly favor the existence of stable strange quark matter.
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I. INTRODUCTION

The properties of cold nuclear matter at densities above
that of atomic nuclei, in particular, its equation of state
(EOS) and the location of the phase transition to decon-
fined quark matter, remain poorly known to this day. The
difficulty in performing first principles calculations in such
systems can be traced back to the complicated nonlinear
and nonperturbative nature of quantum chromodynamics
(QCD). These properties have precluded an analytic solu-
tion describing confinement, while nonperturbative nu-
merical techniques, such as lattice QCD, are inapplicable
at large baryon densities and small temperatures due to the
so-called sign problem. This should be contrasted with the
situation at small baryon density and large temperatures,
where close to the deconfinement transition region lattice
QCD has provided controlled results for the EOS as well as
the nature of the transition [1,2], while at temperatures
much above the transition, the system is well described
by analytic results from resummed perturbation theory [3–
6].

Experimentally, the high temperature/low baryon den-
sity regime of QCD can be studied in relativistic heavy-ion
collisions at the Relativistic Heavy Ion Collider [7–10] and
in the future at the Large Hadron Collider [11]. Collisions
at lower energy, e.g., at the Alternating Gradient
Synchrotron and Super Proton Synchrotron [12,13], as
well as those planned at the Facility for Antiproton and
Ion Research and Relativistic Heavy Ion Collider [14,15],
study QCD matter at somewhat higher baryon density, and
may give some insight into the EOS of cold nuclear matter.
However, at truly low temperatures and supra-nuclear den-
sities, QCD matter exists only in somewhat inconveniently
located ‘‘laboratories’’: compact stars.

In the cores of compact stars, nuclear matter is expected
to reach densities several times that of atomic nuclei nsat �
0:16 fm�3, so that astrophysical observations may be able
to provide critical information about the EOS of strongly
interacting matter in a regime inaccessible to terrestrial
experiments. Theoretically, the bulk properties of nuclear
matter at or close to nsat have been studied using micro-
scopic calculations [16] as well as phenomenological
mean-field theory [17]. While giving matching results for
symmetric nuclear matter (equal number of protons and
neutrons) [18], in neutron rich matter, relevant for compact
star cores, the theoretical predictions differ amongst them-
selves by more than 100 percent for basic quantities such as
the pressure at n� nsat [19]. Extrapolating to higher den-
sities further increases these differences, on top of which
new phenomena such as pion and kaon condensation
[20,21] and the presence of hyperons (such as �, ��)
only add to enlarge the uncertainties in the EOS.
At some critical density, nuclear matter is expected to

undergo a phase transition to deconfined quark matter,
which is theoretically well understood only at asymptoti-
cally high densities, where the QCD coupling �s is small
[22]. There, the stable ground state of quark matter is that
of a color superconductor, but it is not known whether such
a state persists to densities closer to the deconfinement
transition, or whether normal unpaired quark matter, or
some novel phase, becomes favored. Even the possibility
of the normal quark phase being the fundamental ground
state of nuclear matter (with atomic nuclei being only
metastable) has been suggested in the so-called strange
quark matter hypothesis [23–25]. This opened up the pos-
sibility for entire stars being made up of self-bound quark
matter (‘‘strange stars’’) [26].
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Interestingly, despite all the advances in our understand-
ing of QCD, most of the analysis of cold but dense quark
matter still continues to be performed using the MIT bag
model dating back 35 years [27]. In this model, the inter-
actions between quarks are absorbed into a phenomeno-
logical ‘‘bag constant,’’ which is not calculable within the
model but effectively generated by the QCD interactions
(see, Ref. [28] for a discussion of this issue), and is simply
added to the pressure of a noninteracting system. We
believe that a refinement of this model, using a perturbative
EOS for quark matter evaluated with a running �s and
strange quark mass, should be quite superior to the plain
bag model, and—absent advances in truly nonperturbative
methods—should replace the latter whenever aiming for at
least semiquantitative results.

To this end, in this paper we consider the perturbative
evaluation of the QCD pressure at zero temperature, where
the state-of-the-art result is still the pioneering order �2

s

calculation of Freedman and McLerran [29,30] and Baluni
[31]. These authors, however, only included effects of the
strange quark mass up to order �s, dropping the mass
entirely at order �2

s . As present day knowledge suggests
a strange quark mass of about 100 MeV [32], with atomic
nuclei corresponding to a quark chemical potential of
roughly 300 MeV, one can expect non-negligible strange
quark mass effects in the EOS (cf. Ref. [33]). In view of the
situation, we believe that a perturbative calculation of the
cold QCD EOS to order �2

s—including the complete
strange quark mass effects—is long overdue. This provides
the motivation for us to take on this challenge in the present
work.

Our paper is organized as follows. In Sec. II, we intro-
duce our notation, explain how renormalization is per-
formed, and outline the general structure of the
computation. In Sec. III, we then go through all the differ-
ent parts of the calculation, presenting the results for the
individual terms and in the end assembling the entire grand
canonical potential of the system. Section IV is devoted to
a detailed analysis of our result, covering aspects such as
the choice of the renormalization scale and the dependence
of the result on the strange quark mass. Having gained
control of the perturbative EOS, in Sec. V we consider
various applications of it, studying the scenarios of stable
strange quark matter and a phase transition between ordi-
nary quark matter and the hadronic phase. In Sec. VI, we
finally consider the implications of our work on astrophys-
ical systems, while in Sec. VII we draw our conclusions.
Several technical details, as well as most of the partial
results of our computation, are left to Appendixes A, B, C,
D, and E.

II. SETUP

The equation of state of a thermodynamic system is
dictated by the functional relation between some funda-
mental quantity, such as the pressure or energy density, and

various (usually intensive) parameters, such as the tem-
perature and different chemical potentials. In the grand
canonical ensemble, it can be solved from the grand po-
tential, or Landau free energy,

� ¼ E��N ¼ �T lnZ ¼ �PV; (1)

where E is the (microcanonical) energy, and Z the partition
function of the system. In this paper, we set out to perform
a perturbative evaluation of the grand potential of QCD to
order g4 ¼ ð4��sÞ2 in the strong coupling constant, keep-
ing the temperature at zero but assuming the quark chemi-
cal potentials to be high enough so that, due to asymptotic
freedom, the expansion converges to a satisfactory degree.
Various thermodynamic quantities can then be obtained
from the grand potential, which itself is determined by
computing (minus) the sum of all the one-particle-
irreducible vacuum graphs of the theory.
Because of the infrared (IR) sensitivity of�, at order g4

it is no longer sufficient to only consider the strict loop
expansion of the grand potential. In addition, the so-called
plasmon sum must be performed to its full leading order,
which implies resumming all gluonic ring diagrams con-
taining an arbitrary number of insertions of the one-loop
gluon polarization tensor. Upon performing renormaliza-
tion, the expansion of the grand potential can be written as
the IR and ultraviolet (UV) finite sum of (at least semi-)
analytically obtainable one-, two-, and three-loop two-
gluon-irreducible (2GI) diagrams, as well as a numerically
computable plasmon integral.
The aim of this section is to introduce our notation,

explain how the theory is renormalized, and demonstrate
how the computation can be divided into several distinct
pieces, which will be addressed one by one in Sec. III.

A. Notation and conventions

Let us consider a system ofNl flavors of massless quarks
and gluons, to which we add one massive flavor with a
renormalized massm, having in mindNl ¼ 2 andm ¼ ms,
the mass of the strange quark. We use the Euclidean metric,
g�� ¼ ���, and consequently define QCD (in the presence

of finite quark number chemical potentials �i) through the
action SQCD ¼ R

ddxLQCD, with

L QCD ¼ 1
4F

a
��F

a
�� þ �c ið��D� þmi

B ��i�0Þc i: (2)

As usual, the subscript B denotes bare quantities, and we
have defined

Fa
�� � @�A

a
� � @�A

a
� þ gBf

abcAb
�A

c
�;

D� ¼ @� � igBA�; A� ¼ Aa
�T

a:

In accordance with the metric used, our gamma matrices
are all Hermitian, �� ¼ �y

�, and satisfy f��; ��g ¼ 2���.

The flavor index i runs from 1 to Nf � Nl þ 1, with mi ¼
0 for 1 � i � Nl and mNf

¼ m. Throughout the paper,

dimensional regularization in d ¼ 4� 2� dimensions
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will be used to regulate divergent integrals, and hence� ¼
0; . . . ; d� 1. As working at zero temperature implies deal-
ing with d ¼ 4� 2� dimensional integrals rather than
discrete sum integrals, the integration measure becomes

Z 1

�1
dp0

2�

Z dd�1p

ð2�Þd�1
¼ ��2�

��
e�E ��2

4�

�
� Z 1

�1
dp0

2�

�
Z dd�1p

ð2�Þd�1

�
;

where �E ¼ 0:5772 . . . is the Euler-Mascheroni constant,

and the renormalization scales � and �� of the minimal

subtraction (MS) and MS schemes have been introduced
for later convenience. The chemical potential is accommo-
dated in the Feynman rules by shifting the zeroth compo-
nents of the fermionic momenta by p0 ! p0 þ i�i, where
�i is the chemical potential of the quark flavor in question.
We choose to denote the chemical potential corresponding
to the massive quark by �Nf

� �.

Our notation for the Feynman diagrams is as follows:
Solid lines with an arrow correspond to quarks and wiggly
lines to gluons. We work in the Feynman gauge throughout
the calculation, and hence our propagators have the form

consistent with the choice to employ the Euclidean metric.
Here and in the following, capital letters are used to denote
Euclidean four-momenta such as P ¼ ðp0;pÞ, with P2 ¼
p2
0 þ p2. We will also frequently use the abbreviations

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

q
;

z � û� m̂2 ln

�
1þ û

m̂

�
;

(3)

where we have introduced the dimensionless parameters
m̂ ¼ m=�, û ¼ u=�. In addition, the group theory factors
that appear in the calculation read

dA � �aa ¼ N2
c � 1; CA�

cd � fabcfabd ¼ Nc�
cd;

CF�ij � ðTaTaÞij ¼ N2
c � 1

2Nc

�ij;

where the number of colorsNc will later be set to three, and
we have normalized the fundamental representation gen-
erators according to TrTaTb ¼ 1

2�
ab.

Finally, all expressions in this work are given using
natural units, in which @ ¼ c ¼ kB ¼ 1, except when ex-
plicitly stated otherwise.

B. Renormalization

We perform all our calculations in terms of the bare
parameters appearing in the Lagrangian of Eq. (2), and
only in the end express them in terms of the physical,
renormalized ones. By doing this, one avoids dealing
with explicit counter terms, but on the other hand cannot
set � to zero until the end of the computation. The relations
between the bare and renormalized mass and coupling
constant can be obtained from the literature (see, e.g.,
Ref. [34]),

mB ¼ Zmm �
�
1þ �1

g2

ð4�Þ2 þ �2

g4

ð4�Þ4 þOðg6Þ
�
m;

(4)

ðgBÞ2 ¼ Zgg
2 �

�
1þ �3

g2

ð4�Þ2 þOðg4Þ
�
g2; (5)

where we have defined

�1 ¼ ��0�
�1

�2 ¼ CF

�
11

2
CA þ 9

2
CF � Nf

�
��2 � �1

2
��1;

�3 ¼ ��0�
�1;

with�0 and �i being constants that will be given below. As
noted above, all of our calculations are performed in the
Feynman gauge, which is defined by the unrenormalized
gauge parameter 	B taking the value 	B ¼ 1. The gauge
parameter renormalization constant then becomes equal to
that of the gauge field wave function, but neither of them
enters the calculation. The same applies to the fermion
wave function renormalization constant, and hence we
refrain from quoting the corresponding results here.
Closely related to the above quantities are the renormal-

ization group equations for the finite renormalized parame-
ters g and m, which—given to higher order than would be
required by our computation—read [32]

@g2

@ ln ��2
¼ ��0

g4

ð4�Þ2 � 2�1

g6

ð4�Þ4 � 4�2

g8

ð4�Þ6 ; (6)

@m

@ ln ��2
¼ �m

�
�0

g2

ð4�Þ2 þ �1

g4

ð4�Þ4 þ �2

g6

ð4�Þ6
�
: (7)

All constants appearing here are available from Refs. [35–
38] and have the forms
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�0 ¼
11CA � 2Nf

3
; �1 ¼ 17

3
C2
A � CFNf � 5

3
CANf;

�2 ¼ 2857

216
C3
A þ 1

4
C2
FNf � 205

72
CACFNf � 1415

216
C2
ANf þ 11

36
CFN

2
f þ

79

216
CAN

2
f; �0 ¼ 3CF;

�1 ¼ CF

�
97

6
CA þ 3

2
CF � 5

3
Nf

�
;

�2 ¼ CF

�
129

2
C2
F � 129

4
CFCA þ 11 413

108
C2
A þ CFNFð�23þ 24
ð3ÞÞ þ CANF

�
� 278

27
� 24
ð3Þ

�
� 35

27
N2

f

�
:

(8)

The renormalization group equations may furthermore be
integrated to give the running coupling constant �sð ��Þ ¼
g2ð ��Þ=ð4�Þ and strange quark mass mð ��Þ as functions of
the renormalization scale. Following the treatment of
Ref. [38] by expanding the results in powers of �s, we
obtain

�sð ��Þ ¼ 4�

�0L

�
1� 2�1

�2
0

lnL

L

�
; L ¼ lnð ��2=�2

MS
Þ;
(9)

mð ��Þ ¼ mð2 GeVÞ
�

�sð ��Þ
�sð2 GeVÞ

�
�0=�0

� 1þ A1
�sð ��Þ
� þ A2

1
þA2

2 ð�sð ��Þ
� Þ2

1þ A1
�sð2 GeVÞ

� þ A2
1
þA2

2 ð�sð2 GeVÞ
� Þ2

; (10)

with

A1 � ��1�0

2�2
0

þ �1

4�0

;

A2 � �0

4�2
0

�
�2

1

�0

� �2

�
� �1�1

8�2
0

þ �2

16�0

:

(11)

Here, �MS denotes the MS renormalization point, and we
have chosen a fiducial scale of 2 GeV where the strange
quark mass takes the value mð2 GeVÞ ’ 100� 30 MeV
[32].
One way to fix the renormalization point is by requiring

that the coupling of Eq. (9) agrees with the current best
experimental value for the parameter at the fiducial scale,
�sð2 GeVÞ ¼ 0:2994þ 0:0152� 0:0141 [32], leading to
�MS ¼ 0:378þ 0:034� 0:032 GeV. For completeness,

we note that an alternative to this would be to use a lattice
QCD determination of the deconfinement temperature at
small baryonic densities. In one lattice study, this was
found to give �MS ’ Tc=0:49 [39], which—depending on

the result for Tc one uses [40,41]—results in �MS �
0:375� 0:016 GeV. As this result happens to lie within
the uncertainties of the first method, we thus adopt �MS ¼
0:378þ 0:034� 0:032 GeV for the remainder of this
work.

In Fig. 1, we display the functions �sð ��Þ and mð ��Þ, as
given by Eqs. (9) and (10), to provide an indication of the
value and uncertainties of the quantities. From here, it is

evident that below ��� 0:8 GeV, the results become domi-
nated by the various uncertainties discussed above, setting

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Λ [GeV]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α s(Λ
)

(a)

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Λ [GeV]

0.1

0.2

0.3

0.4

0.5

m
(Λ

) [
G

eV
]

(b)

FIG. 1 (color online). Renormalization scale dependence of �s and m from Eqs. (9) and (10), using values of �� relevant for compact
stars. The full lines and dark shaded regions correspond to the central value and uncertainty of �MS ¼ 0:378þ 0:034� 0:032 GeV,

respectively. The light shaded region in m corresponds to the uncertainty in mð2 GeVÞ. The circles with error bars correspond to
reference points obtained from Ref. [32].
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a lower limit for the values of �� for which one can even
optimistically expect quantitative results from any pertur-
bative calculation (even in the hypothetical case that one
was able to determine the quantity in question to infinitely
many orders in �s).

1 Reducing these uncertainties would
require a better determination of both �s and m at the
fiducial scale, which is not the aim of our work.

C. Organizing the calculation

To the perturbative order we are studying, the grand
potential of QCD obtains contributions from the (renor-
malized) single quark loop �1L, the two- and three-loop
2GI vacuum diagrams of the theory �2GI, as well as the
plasmon ring sum �plas,

� ¼ �1L þ�2GI þ�plas: (12)

The 2GI graphs are displayed in Fig. 2, while the plasmon
sum �plas corresponds to the sum of all gluonic ring

diagrams containing at least two insertions of the one-
loop gluon polarization tensor, depicted in Fig. 3(a)
(cf. Appendix A). As explained in more detail in
Sec. III D as well as Ref. [5], the benign IR behavior of
the vacuum (T ¼ � ¼ 0) part of the tensor allows the
division of the ring sum into three parts. These include
the three-loop vacuum-vacuum (VV) and vacuum-matter
(VM) graphs of Figs. 3(b) and 3(c), as well as the ‘‘matter’’
(vacuum subtracted) ring sum of Fig. 3(d),

�plas ¼ �VV þ�VM þ�ring: (13)

Here, the VV diagram only produces a chemical potential
independent contribution to the grand potential, and is thus
neglected. The matter part of the polarization tensor
merely includes the fermion loop, which behaves like
1=P2 in the UV, so one finds that the ring sum �ring is

both IR and UV finite (cf. Sec. III D).
To further organize the calculation, one may separate the

contributions of the massless quarks to both�1L and�2GI

from the rest by writing

�1L ¼ �m¼0
1L þ�m

1L; �m¼0
1L � �1Lð� ¼ mÞ; (14)

�2GI ¼ �m¼0
2GI þ�m

2GI; �m¼0
2GI � �2GIð� ¼ mÞ;

(15)

and defining �m
1L and �m

2GI as the respective differences.

With the vacuum-matter diagram, the issue is slightly more
subtle, and we in fact have to write it in three parts,

�VM ¼ �m¼0
VM þ�m

VM þ�x
VM: (16)

Here,�m¼0
VM is defined as the VM diagram composed of the

massless part of the matter polarization tensor and them !
0 limit of the vacuum polarization tensor (i.e., containing
contributions from Nf ¼ Nl þ 1 massless quarks), while

�m
VM consists of a massive matter loop and the entire, m

dependent vacuum polarization tensor. Finally, �x
VM is the

contribution to the grand potential originating from a dia-
gram composed of the massless part of the matter polar-
ization tensor coupled to the difference of a massive and
massless vacuum quark loop. It is easy to verify that the
sum of these three functions indeed equals �VM.
Collecting the various pieces of the above expansion, the

result for the grand potential may be written in the form

� ¼ �m¼0 þ�m þ�x
VM þ�ring; (17)

where we have denoted

�m¼0 ¼ �m¼0
1L þ�m¼0

2GI þ�m¼0
VM ; (18)

�m ¼ �m
1L þ�m

2GI þ�m
VM: (19)

The reason for the above definitions now becomes clear:
Having written � in terms of altogether eight different
parts, we have managed to separate the contributions of the
massless quark flavors (up to their contribution to the ring
sum) into the function �m¼0, the value of which may be
directly taken from Ref. [5]. In the massive part, the con-
tributions from the single quark loop �m

1L (including re-
normalization corrections to it), the sum of the two- and
three-loop 2GI diagrams�m

2GI, as well as the VM part�m
VM

have also been separated. In the following section, we will
proceed to evaluate these various parts of the grand poten-
tial one by one.

III. THE COMPUTATION

This section contains a discussion of the evaluation of
each of the independent contributions to the grand poten-

a) b) c) d)

FIG. 2. The two- and three-loop 2GI diagrams contributing to the grand potential of QCD.

1In principle, one should adjust Nf in Eq. (8) when crossing
the strange quark mass threshold (cf. Ref. [42] for a pedagogical
review on heavy quark decoupling). However, from Eq. (10) one
finds that the decoupling of the strange quark occurs at ���
0:6 GeV, where our results are not quantitatively correct in any
case. Hence, we will simply ignore this effect in the following. In
contrast, note that we will find that setting m ¼ 0 would change
our results for the partition function at �� � 0:6 GeV, so the
strange quark mass effect cannot be altogether ignored.
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tial, as defined in the ‘‘master formula’’ of Eq. (17). For
brevity of presentation, many of the calculational details as
well as nearly all intermediate results are left to be listed in
the Appendixes. Readers not interested in the calculational
details may wish to skip this section altogether and proceed
straight to Sec. IV, where the final result is analyzed.

A. �m¼0: massless quarks

The contribution of the massless quark flavors to the
grand potential, including the massless single quark loops
�m¼0

1L , the sum of the two- and three-loop 2GI graphs

containing massless quarks �m¼0
2GI , and the massless VM

graph �m¼0
VM can be extracted directly from Ref. [5]. One

finds

�m¼0
1L

V
¼ � Nc

12�2

XNl

i¼1

�4
i ; (20)

�m¼0
2GI

V
¼ dA

4�2

�
gð ��Þ
4�

�
2XNl

i¼1

�4
i

�
1�

�
5CA � 2Nf

3�

þ 8

3
ðCA � NfÞ ln

��

2�i

� 2

3
CA þ 17

2
CF � 10

3
Nf

�

� g2ð ��Þ
ð4�Þ2

�
; (21)

�m¼0
VM

V
¼ dA

4�2
ðð5=2þ �ÞCA � NfÞ

�XNl

i¼1

�4
f

�
2

3�
þ 4 ln

��

2�i

þ 52

9

�
g4ð ��Þ
ð4�Þ4 ; (22)

where V is the volume of the system, renormalization
corrections have been taken into account, and the result
is expressed in terms of the renormalized gauge coupling
constant g.

Adding the three pieces together, one obtains for the
function �m¼0

�m¼0

V
¼ � 1

4�2

XNl

i¼1

�4
i

�
Nc

3
� dA

g2ð ��Þ
ð4�Þ2

þ dA

�
4

3

�
Nf � 11CA

2

�
ln

��

2�i

� 142

9
CA þ 17

2
CF

þ 22

9
Nf

�
g4ð ��Þ
ð4�Þ4

�
: (23)

B. �m: massive quark

In this subsection, the contribution of the massive quark
to the grand potential of QCD is evaluated by separately
considering all the parts of the function �m, as listed in
Eq. (19). The final result for the function will be given at
the end.

1. The massive quark loop

The grand potential of one free massive quark flavor at
zero temperature but finite chemical potential can be writ-
ten in the form

�m
1L

V
¼ �2Nc�

2�
Z d3�2�p

ð2�Þ3�2�
ð�� EðpÞÞ�ð�� EðpÞÞ;

(24)

where the regulator � has been kept nonzero because of the
bare mass parameter appearing inside of EðpÞ. Writing the
integral in the form

�m
1L

V
¼ �2Nc�

2� S3�2�

ð2�Þ3�2�

�
Z ffiffiffiffiffiffiffiffiffiffiffiffi

�2�m2
B

p

0
dpp2�2�ð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

B

q
Þ; (25)

with Sn denoting the area of an n sphere, one can perform a
power series expansion in g and �. Keeping terms up to and
including Oðg4Þ and Oð�2Þ, the integral is evaluated to be

�m
1L

V
¼�2Nc�

2�

�Z d3p

ð2�Þ3 ð��EðpÞÞ�ð��EðpÞÞ

�
�
�1m

2 g
2ð ��Þ
ð4�Þ2 þ

�
�2m

2 þ�2
1m

2

2

�
1þ 2m2 @

@m2

��

� g4ð ��Þ
ð4�Þ4

�Z d3�2�p

ð2�Þ3�2�

�ð��EðpÞÞ
EðpÞ

�
; (26)

in which the mass and coupling constant are now the
renormalized ones.

FIG. 3. The generic form of the ring or plasmon sum.
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A straightforward evaluation of the remaining integrals
finally gives

�m
1L

V
¼ � Nc

12�2

�
u�

�
�2 � 5

2
m2

�
þ 3m4

2
ln

�
�þ u

m

��

� dAm
2 6

�
I1
g2ð ��Þ
ð4�Þ2 þ dAm

2

�
CA

�
11

�2
� 97

6�

�
I1

þ CF

��
18

�2
� 3

2�

�
I1 þ 18I1b

�
� Nf

�
2

�2
� 5

3�

�
I1

�

� g4ð ��Þ
ð4�Þ4 ; (27)

where the Inðm̂Þ’s denote integral functions defined in
Appendix D. Here and in the following, we have sup-
pressed the arguments of these functions, except when
they are necessary to avoid confusion.

2. The massive two- and three-loop skeleton graphs

The four massive 2GI graphs of Fig. 2 contribute to the
grand potential as

��m
2GI

V
¼ Da þDb þDc þDd; (28)

where the functions Di appearing on the right-hand side
correspond to the diagrams (a)–(d). Their evaluation pro-
ceeds in several steps. First, we write down expressions for
the graphs in terms of the Feynman rules and contract all
color and Lorentz indices, reducing the original functions
to sums of scalar integrals. The finiteness of the chemical
potential prevents the application of integration-by-parts
identities at this point, so instead we perform the p0 energy
integrations using the residue theorem. Collecting the out-
come of this step, one observes that each graph hereby
reduces to a simple form that can be viewed as the result of
having performed all possible ‘‘cuts’’ on the fermionic
lines of the diagram, their number ranging from zero to
the number of loops.

Each time a line is cut, the corresponding propagator is
placed on shell and the remaining part of the diagram
integrated with respect to the three-momentum in question
with the weight

�
Z d3p

ð2�Þ3
�ð�� EðpÞÞ

2EðpÞ ; (29)

while � is set to zero in all other propagators. This implies
that the integrands of the phase space integrals become
d ¼ 4� 2� dimensional vacuum (T¼�¼0) two-, four-,
and six-point functions, which may be evaluated using
integration-by-parts relations, conveniently implemented,
e.g., in the MATHEMATICA package FIRE [43] and results
available in the literature (see, e.g., Refs. [44–47]).

In the end, the cutting procedure separates each n-loop
graph into nþ 1 parts

Di ¼ D0c
i þD1c

i þD2c
i þD3c

i þ 	 	 	 ; (30)

corresponding to the number of cuts performed. Thus the
entire Oðg4Þ 2GI contribution to the grand potential sepa-
rates into three pieces

�m
2GI ¼ �m;1c

2GI þ�m;2c
2GI þ�m;3c

2GI : (31)

Here, we have taken advantage of the fact that the zero-cut
contribution is always independent of the chemical poten-
tial and may thus be dropped. We also note that the
computationally most complicated triple-cut part of the
grand potential is automatically UV finite and thus in no
need of regularization, which simplifies the computations
significantly.
As the detailed evaluation of the function �m

2GI is quite

lengthy and almost void of physical content, we leave it to
Appendix B. There, we first go through the scalarization
and cutting procedures for each graph, and in the end list

the results for the functions �m;1c
2GI , �

m;2c
2GI , and �m;3c

2GI in

Eqs. (B17)–(B19).

3. The VM graph

The evaluation of the massive vacuum-matter graph
�m

VM proceeds in a way highly analogous to that of the
2GI graphs, i.e., via first performing the Lorentz and color
contractions and then taking one and two cuts in the
remaining scalarized diagrams (the number of fermion
propagators limits the maximum number of cuts to two
here). The result can be written in the form

�m
VM ¼ �m;1c

VM þ�m;2c
VM ; (32)

where the functions �m;1c
VM , �m;2c

VM are given in Eqs. (C4)
and (C5).

4. Assembling the result for �m

Collecting the results of this section and Appendixes B
and C, we see that the contribution of the massive quark
flavor to the grand potential is of the form

��m

V
¼ M1 þM2

g2ð ��Þ
ð4�Þ2 þM3

g4ð ��Þ
ð4�Þ4 ; (33)

where the two first terms of the result have been calculated
before, e.g., in Ref. [33]. In our presentation, the function
M1, corresponding to the grand potential of one free
massive quark flavor, can be read off from Eq. (27),

M 1 ¼ Nc�
4

24�2
f2û3 � 3zm̂2g; (34)

where we recall the abbreviations introduced in Eq. (3). At
the next order Oðg2Þ, the function �m on the other hand
obtains contributions from the two-loop graph of Fig. 2(a)
and the Oðg2Þ renormalization correction to the massive
single quark loop. Adding these functions together using
Eqs. (27), (B17), and (B18), we find
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M 2 ¼ dA�
4

4�2

�
�6zm̂2 ln

��

m
þ 2û4 � 4zm̂2 � 3z2

�
: (35)

To obtain the Oðg4Þ contribution to �m, one needs to
add together the corresponding parts of the functions �m

1L,
�m

2GI, and �m
VM. Because of the length of the resulting

expressions, we organize the calculation in terms of the
number of cuts and write M3 in the form

M 3 ¼ M1c
3 þM2c

3 þM3c
3 ; (36)

dealing with the three pieces separately.
There are three different types of single-cut contribu-

tions to M3: The order g4 renormalization correction to

�m
1L from the last two lines of Eq. (27), the function �m;1c

2GI

from Eq. (B17), as well as the single-cut contribution to the
massive VM graph �m

VM from Eq. (C4). Summing up the
various pieces, one finds

M1c
3 ¼ dA�

4

ð2�Þ2
��
�CA

��
22 ln

��

m
þ 185

3

�
ln
��

m
þ 1111

24

� 4�2

3
þ 4�2 ln2� 6
ð3Þ

�
� CF

�
3

�
12 ln

��

m
þ 5

�

� ln
��

m
þ 313

8
þ 35�2

6
� 8�2 ln2þ 12
ð3Þ

�

þ Nf

�
2

3

�
6 ln

��

m
þ 13

�
ln
��

m
þ 71

12
þ 2�2

3

�

þ 6� 2�2

�
m̂2zþ 4m̂2CF

�
3

�
3 ln

��

m
þ 4

�

� ln
��

m
þ 4

�
ðû� zÞ

�
; (37)

where it is interesting to note that all the 1=� divergences
have canceled. This implies that no cancellations need to
take place between the single and double-cut contributions,
which is an important computational simplification.

At the two-cut level, there are two sources of contribu-
tions to M3: The two- and three-loop 2GI diagrams from
Eq. (B18) and the two-cut piece of the function �m

VM from
Eq. (C5). The sum of these parts reads

M2c
3

ð4�Þ2 ¼ dA

�
CA

�
�16

9
I21 þ

62

9
m2I2þ 5

3
I1c� 10

3
m2I2cþ I10

� 22

3
½I21 � 2m2I2
 ln

��

m

�
þCF

�
I11þ½24ðm2I2

�m2I1bI1þ 2m4I2bÞþ 48m4I8
 ln
��

m

�

þNf

�
10

9
I21 �

20

9
m2I2� 2

3
I1cþ 4

3
m2I2c

þ
�
4

3
I21 �

8

3
m2I2

�
ln

��

m

�
� 2

3
I12

�
; (38)

where the definitions and values of the various integrals In
are given in Appendix D.
Finally, the only triple-cut contribution to the grand

potential originates from the 2GI graphs of
Figs. 2(b)–2(d), implying that it can be read off directly
from Eq. (B19). One finds

M3c
3

ð4�Þ4 ¼ �dAfCA½2I1I2 � 4I5 þ 8m4I6 � 4I7

þ CF½2I21I1b � 4I1I2 � 8m2I1I2b þ 8m2I3

þ 8m4I3b � 2I4 þ 8I5 � 16m4I6 þ 8I7

� 8m2I1I8 þ 8m4I9
g: (39)

Summing up the single-, double-, and triple-cut contri-
butions toM3 leads to a complicated expression, in which
several parts must be evaluated numerically. To this end,
we have found it most convenient to express the result in
terms of a basis of simple fitting functions, leading to the
result

M3¼dA�
4

2�2

�
�m̂2½ð11CA�2NfÞzþ18CFð2z� ûÞ


�
ln
��

m

�
2

þ1

3

�
CA

�
22û4�185

2
zm̂2�33z2

�
þ9CF

2
ð16m̂2û

�ð1� ûÞ�3ð7m̂2�8ûÞz�24z2Þ

�Nfð4û4�13zm̂2�6z2Þ
�
ln
��

m
þCA

�
�11

3
ln
m̂

2

�71

9
þG1ðm̂Þ

�
þCF

�
17

4
þG2ðm̂Þ

�

þNf

�
2

3
ln
m̂

2
þ11

9
þG3ðm̂Þ

�
þG4ðm̂Þ

�
; (40)

where the functions Gnðm̂Þ (that are defined so that they
vanish in the m̂ ! 0 limit) read

G1ðm̂Þ ¼ 32�4m̂2½�0:018 63þ 0:020 38m̂2

� 0:039 00m̂2 logðm̂Þ þ 0:025 81m̂2ðlogðm̂ÞÞ2
� 0:031 53m̂2ðlogðm̂ÞÞ3 þ 0:011 51m̂2ðlogðm̂ÞÞ4
;

(41)

G2ðm̂Þ ¼ 32�4m̂2½�0:1998� 0:047 97 logðm̂Þ
þ 0:1988m̂2 � 0:3569m̂2 logðm̂Þ
þ 0:3043m̂2ðlogðm̂ÞÞ2 � 0:1611m̂2ðlogðm̂ÞÞ3
þ 0:097 91m̂2ðlogðm̂ÞÞ4
; (42)

G 3ðm̂Þ ¼ 32�4m̂2½�0:057 41� 0:026 79 logðm̂Þ
� 0:002 828ðlogðm̂ÞÞ2 (43)
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þ 0:057 16m̂2 � 0:087 77m̂2 logðm̂Þ
þ 0:0666m̂2ðlogðm̂ÞÞ2 � 0:023 81m̂2ðlogðm̂ÞÞ3
þ 0:013 84m̂2ðlogðm̂ÞÞ4
; (44)

G 4ðm̂Þ ¼ 32�4m̂2½0:078 23þ 0:0388 logðm̂Þ
þ 0:004 873ðlogðm̂ÞÞ2 (45)

� 0:078 22m̂2 þ 0:1183m̂2 logðm̂Þ
� 0:087 55m̂2ðlogðm̂ÞÞ2 þ 0:032 93m̂2ðlogðm̂ÞÞ3
� 0:016 44m̂2ðlogðm̂ÞÞ4
: (46)

C. �x
VM: The cross term VM graph

Next, we look at the vacuum-matter term�x
VM, in which

the quarks in the matter part of the diagram are massless,
while the vacuum part corresponds to the difference of a
massive and a massless quark loop. Performing again one
and two cuts and using the results of Appendix C, one
obtains

�x
VM

V
¼ dA

g4

ð4�Þ2
m4

12�4

XNl

i¼1

Z �2
i =m

2

0
dw ln

m2w

�2
i

�
�
2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þwÞ3

w

s
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
w

1þw

r �
þw logð4wÞ

�

�dA
g4

ð4�Þ2
m4

12�4

XNl

i¼1

Ix

�
�i

mþ�i

�
; (47)

where the integral can be approximated by the pocket
formula

IxðtÞ ¼ �3t4ð1� lntÞ
�

0:83

ð1� tÞ2 þ
0:06

ð1� tÞ � 0:056

þ lnð1� tÞ
tð1� tÞ2 ð1:005� 0:272tð1� tÞ

þ 0:154tð1� tÞ2Þ
�
: (48)

D. �ring: The plasmon contribution

The setup for the plasmon sum calculation can be found
in standard textbooks, e.g., Sec. Vof Ref. [48], according to
which the contribution can be written in the form

�plas

V
¼ dA

2

Z d4K

ð2�Þ4
�
2 ln

�
1�Gðk0; kÞ

K2

�

þ ln

�
1� Fðk0; kÞ

K2

�
þ 2Gðk0; kÞ

K2
þ Fðk0; kÞ

K2

�
; (49)

where k denotes the magnitude of the three-vector k. In
this equation, we have defined

Gðk0; kÞ ¼ 1

2

�
�

�
�ðk0; kÞ � K2

k2
�00ðk0; kÞ

�
;

Fðk0; kÞ ¼ K2

k2
�00ðk0; kÞ;

(50)

with �
�
� ¼ �0

0 ��i
i, where ��� is the one-loop gluon

polarization tensor (cf. Appendix A). One should note that
we have used the notation F, G, rather than �1, �2 some-
times found in the literature [30,49] to avoid confusion

with the renormalization scale ��.
Taking advantage of the benign IR behavior of the

vacuum polarization tensor, we expand the logarithms in
powers of the vacuum tensor, keeping only contributions
up to and including Oðg4Þ. This leads to

ln

�
1�Gðk0; kÞ

K2

�
¼ ln

�
1�Gmatðk0; kÞ

K2

�
�Gvacðk0; kÞ

K2

�Gvacðk0; kÞGmatðk0; kÞ
K4

� 1

2

G2
vacðk0; kÞ
K4

; (51)

and a similar expression for the Fðk0; kÞ part. This separa-
tion allows us to split the plasmon sum into the VV, VM,
and ring sum pieces, the first two of which were already
covered in the previous section. The last part, which is
considered here, reads

�ring

V
¼ dA

2

Z d4K

ð2�Þ4
�
2 ln

�
1�Gmatðk0; kÞ

K2

�

þ ln

�
1� Fmatðk0; kÞ

K2

�
þ 2Gmatðk0; kÞ

K2

þ Fmatðk0; kÞ
K2

�
: (52)

To isolate the g4 lng term from the rest of the plasmon
sum, we separate from Eq. (52) the combination (both for
F and G)

Z d4K

ð2�Þ4
�
ln

�
1� FmatðK ¼ 0;�Þ

K2

�
þ FmatðK ¼ 0;�Þ

K2

þ F2
matðK ¼ 0;�Þ
2K2ðK2 þ �2Þ

�
; (53)

where � is a fictitious mass scale that will drop out in the
final result and we have switched from using the variables

ðk0; kÞ to K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k2

q
and � � arctan k

k0
. The reason for

introducing this particular function is that it captures the
relevant IR physics in a form where the K integration may
be performed analytically, giving2

2Note that there is an error in the corresponding Eq. (5.5.2) of
Ref. [48].
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4

ð2�Þ3
Z �=2

0
d�sin2�

F2
matðK ¼ 0;�Þ

4

�
�
� 1

2
þ lnð�FmatðK ¼ 0;�Þ=�2Þ

�
: (54)

The complete ring sum contribution to the grand potential
then becomes

�ring ¼ �ð1Þ
ring þ�ð2Þ

ring þ�ð3Þ
ring; (55)

where the Oðg4 lngÞ contribution has been isolated in

�ð1Þ
ring

V
¼ dAg

4 lng

ð2�Þ3
Z �=2

0
d�sin2�

�
2
G2

matðK ¼ 0;�Þ
g4

þ F2
matðK ¼ 0;�Þ

g4

�
; (56)

and the remaining part of the g4 contribution is contained
in the functions

�ð2Þ
ring

V
¼�dA

2

g4

64�7

Z �=2

0
d�sin2�

���2�2FmatðK ¼ 0Þ
g2

�
2

�
�
1þ ln

�4g4

F2
matðK ¼ 0Þ

�
þ 1

2

��4�2GmatðK ¼ 0Þ
g2

�
2

�
�
1þ ln

�4g4

G2
matðK ¼ 0Þ

��
;

�ð3Þ
ring

V
¼ dA

2

2g4

ð2�Þ3
Z 1

0
dKK

Z �=2

0
d�sin2�

1

g4

�
�
F2
matðK ¼ 0Þ �F2

mat

K2
�F2

matðK ¼ 0Þ
K2 þ�2

þ 2G2
matðK ¼ 0Þ � 2G2

mat

K2
� 2G2

matðK ¼ 0Þ
K2 þ�2

�
: (57)

Collecting all of the above formulas, one observes that
the result for the plasmon ring sum can be written in the
form

�ring

V
¼ dAg

4

512�6

�
ð ~�2Þ2

�
2 ln

�
g

4�

�
� 1

2
þ 1

2

�
� 19

3
þ 2�2

3

þ I15ð ~�Þ
ð ~�2Þ2 þ 16

3
ð1� ln2Þ ln2þ I16ðm̂; ~̂�2Þ

��

þ 2�2
XNl

i¼1

�2
i

�
I14

�
2 ln

�
g

4�

�
� 1

2

�
þ 1

2

�
I17ðm̂; �̂iÞ

þ 16

3
ð1� ln2Þ ln2I18 þ I19ðm̂; ~̂�2Þ

��

þ�4

�
I13

�
2 ln

�
g

4�

�
� 1

2

�
þ 1

2

�
I20 þ 16

3
ð1� ln2Þ

� ln2I21 þ I22ðm̂; ~̂�2Þ
���

; (58)

where ~� ¼ ð�1; �2; . . . ; �Nl
Þ and ~̂� � ~�=�, while the

definitions of the In’s—including approximation formulas

to the numerically evaluated functions—can again be
found from Appendix D. Finally, we note that upon send-
ing� ! m in Eq. (58) and using the result that in this limit

I16ðm̂; ~̂�2Þ ! �0:856 38 . . . , the result of Nl massless
quark flavors presented in Ref. [5] is recovered.
Similarly, one can show that taking m ! 0, one obtains
the correct result for Nf ¼ Nl þ 1 massless flavors.

E. The result for the QCD grand potential

According to our master equation (17), the QCD grand

potential, evaluated to the perturbative order g4 in the MS
scheme, can be written as the sum of four terms, each of
which we have evaluated in the previous sections. Of these
functions,
(i) �m¼0 corresponds to the contribution of the mass-

less quark flavors, and is available from Eq. (23).
(ii) �m corresponds to the contribution of the massive

quark, and is available from Eq. (33), using
Eqs. (34), (35), and (40).

(iii) �x
VM corresponds to a cross term vacuum-matter

diagram, and is available from Eq. (47).
(iv) �ring corresponds to the plasmon ring sum, and is

available from Eq. (58), using integrals listed in
Appendix D.

Before proceeding to use our result to study various
physics questions, we want to stress that it has passed all
the consistency checks available in the literature. In par-
ticular, the result is renormalization group invariant, i.e.,

the explicit logarithms of �� match with those originating
from the running of the coupling and the strange quark
mass, and the result correctly approaches the cases of two
and three massless quark flavors in the respective limits
� ! m and�=m ! 1. Of these, the fact that the massless
Nf ¼ 3 result of Refs. [5,29] is analytically reproduced is

highly nontrivial, and a strong indication that our calcu-
lation has been performed correctly.
At this point, a remark regarding the region of applica-

bility of our result is in order. As can be verified from
Eqs. (37) and (40), the grand potential contains a part that
behaves in the � ! m limit as g4�2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m

p
, leading to

a divergent 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m

p
contribution to the strange quark

number density. Inspecting the lower order contributions to
�, one can identify the reason for this behavior: In one part
of the result, the expansion parameter is g2�=ð��mÞ,
which diverges in the limit m ! �. It would be interesting
to analyze this effect in more detail and investigate what
type of a resummation scheme would be required to de-
scribe the limit properly, but this is beyond the scope of the
present work. For the purposes of this article, we merely
note that as long as one confines the analysis to values of�
satisfying

��m

m
* g2; (59)

no problems will occur. Because of the rather low value of
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the strange quark mass, this in practice provides no extra
limitation for the applicability of our result.

IV. ANALYZING THE RESULT: QUARK MATTER
EOS

In this section, the properties of the cold quark matter
EOS are derived from the result presented in the previous
section, and issues such as the strange quark mass depen-
dence and the choice of renormalization scale will be
discussed. We want to stress that while the calculation of
the QCD grand potential is completely unambiguous, the
extraction of physical quantities such as the EOS makes it
necessary to adopt particular strategies for the use of the
result, e.g., regarding to which quantities to truncate at a
given perturbative order while still ensuring thermody-
namic consistency. With this caveat in mind, it is pleasing
that many properties of the resulting EOS are naturally
meaningful and intuitive. For example, in this section it
will be demonstrated that the result for the total quark
number density for two massless and one massive quark
flavors smoothly interpolates between the cases of two and
three massless quarks.

A. Choice of renormalization scale

With the functional form of �sð ��Þ and the strange quark
mass mð ��Þ specified by Eqs. (9) and (10), the only un-
determined parameter in the perturbative EOS is the choice

of the renormalization scale ��. At high temperature and
low density, the canonical choice for it is the first non-
vanishing Matsubara frequency 2�T, with which re-
summed perturbation theory has been seen to provide a
reasonable description of the lattice results for the EOS and
entropy density for temperatures at least a few times the
critical temperature of the deconfinement transition [3,50].
For one massless quark with chemical potential �, phe-

nomenological models suggest the choice �� ¼
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ð�=�Þ2p

up to an overall factor of 2 [51–54],
which also happens to be the scale appearing in the leading
order fermionic quasiparticle mass [50]. Finally, a com-
parison of the perturbative and exact pressure at zero
temperature, known in the limit of a large flavor number,

also suggests �� ¼ 2� [55].
For the above reasons, our canonical choice for the

renormalization scale will be �� ¼ 2
P

�i=Nf, around

which we will vary the parameter by a factor of 2. We

have also investigated more complicated choices of ��
taking into account the finite value of ms, but have found
this to have only minor effects on the results.

B. Warm-up: massless quarks

To illustrate our approach in a simple setting, let us first
consider the case of three massless quarks (Nf ¼ Nl ¼ 3)

at the same chemical potential (�u ¼ �d ¼ �s ¼ �),

corresponding to a system that is locally electrically neu-
tral. Up to Oð�2

sÞ, the perturbative grand potential is then
given by the sum of Eqs. (23) and (58), with the massive
quark’s chemical potential set to zero in the plasmon
integrals. In principle, one could extract the pressure di-
rectly from these equations, via P ¼ ��=V. The determi-
nation of the EOS will, however, also require the total
quark number density

n ¼ � 1

V

@

@�
½�m¼0 þ�m¼0

ring 
; (60)

which, when evaluated using this formula, will receive
corrections at higher order in �s for instance from @

@��
2
s .

These higher order terms are beyond the accuracy of our
calculation, and hence typically ill behaved, but cannot be
simply dropped because this would imply nd� � VdP
and therefore ruin thermodynamic consistency. However,
it is also possible to choose the quark number density as the
fundamental quantity, keeping only terms up to (and in-
cluding) Oð�2

sÞ, and use it to determine the other parts of
the EOS by requiring thermodynamic consistency. Using
Eq. (60), we thus obtain (for general Nf) the three-loop

result

nð2Þð�; ��Þ ¼ nð0Þð�Þ
�
1� 2

�s

�
�
�
�s

�

�
2
�
61

4
� 11 ln2

� 0:369 165Nf þ Nf ln
Nf�s

�
þ �0 ln

��

�

��
:

(61)

Here, �0 is given by Eq. (8), and the noninteracting quark

number density reads nð0Þð�Þ ¼ Nf�
3=�2.

In Fig. 4(a), we display the behavior of the function

nð2Þð�; ��Þ, evaluated numerically using Eq. (9) with the

value of the renormalization scale varied between �� ¼ �
and 4�. To assess the convergence properties of the per-
turbative expansion, we show in the same figure also the

two-loop result nð1Þ, obtained by truncating Eq. (61) at
order �s and—to be consistent—also truncating Eq. (9)
by setting �1 ¼ 0. Inspecting the result, we find that the

total quark number density nð�; ��Þ is (even when normal-
ized to the free quark density) a monotonically increasing
function of �, and vanishes for a particular chemical

potential �0ð ��Þ. This critical chemical potential is below
the regime where our computation is reliable, and the fact
that the quark number densities become negative for �<
�0 can be seen to signal the breakdown of our calculation.

We will therefore set nð�; ��Þ ¼ 0 for �<�0ð ��Þ.
As one can see from Fig. 4(a), our results for nð2Þ are

within the uncertainty band of the two-loop result, given by

the renormalization scale dependence of nð1Þ, for � *
1 GeV, indicating that the perturbative expansion for the
quark number density converges reasonably well. More
surprisingly, even at lower �, where the uncertainty band

generated by ��=� 2 ½1; 4
 is large, our values for �0ð ��Þ
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do not differ much between nð1Þ and nð2Þ. This should be
contrasted with the case of high temperatures and low
densities, where the convergence properties of weak cou-
pling expansions are in most cases substantially worse.

Finally, from the quark number density one also obtains
the pressure through the relation

Pð�; ��Þ ¼ �Bþ
Z �

�0ð ��Þ
d�nð�; ��Þ; (62)

where B is an integration constant, equal to minus the

pressure at � ¼ �0ð ��Þ. While in a purely perturbative
calculation B would usually be set to zero, in a realistic
description it should be taken to be nonvanishing as the
pressure can in any case only be determined up to an
additive constant, representing the pressure difference be-
tween the physical and perturbative vacua. In our work, we
will consider B a free parameter, which allows us to take
into account nonperturbative effects not captured by the
weak coupling expansion. In fact, using the free quark

number density nð0Þ with �0 ¼ 0 instead of nð2Þ in
Eq. (62), one recovers the expression for the pressure in
the original MIT bag model, with B taking the role of the
bag constant.

When performed in the way described above, our origi-
nally purely perturbative calculation can be seen to offer
the possibility of adding nonperturbative effects to a result
that is guaranteed to have the correct behavior at high
energy densities. Because of physics criteria (e.g., requir-
ing the energy density to be positive), the possible values
for B are, however, typically rather restricted, allowing us
to make quantitative statements that are not possible in the
original MIT bag model. In particular, if the equation of
state is to be used down to � ¼ �0, one must require B �
0, because otherwise the energy density

"ð�; ��Þ ¼ �Pð�; ��Þ þ�nð�; ��Þ (63)

will be negative at � ¼ �0. It is only if one ceases to use
the perturbative EOS at some �>�0—for instance when
matching to a hadronic EOS at smaller �—that B can take
on negative values.

C. Massive quarks

In a realistic attempt to describe cold deconfined quark
matter, the nonvanishing mass of the strange quark must be
taken into account. Up to and including the perturbative
order �2

s , the grand potential is then given by the main
result of our calculation, collected in Sec. III E. To extract
physically meaningful information from this expression,
we follow the same strategy as in Sec. IVB up to some
minor modifications necessary to maintain thermodynamic
consistency.
We begin by evaluating the up (u) quark number density

to Oð�2
sÞ, truncating terms of higher order, and use this to

obtain expressions for the down (d) and strange (s) quark
number densities that are thermodynamically consistent,
i.e., satisfy relations such as @ns=@�u ¼ @nu=@�s. This
procedure leads to the results

nuð�u;�d;�sÞ ¼ nð2Þu ð�u;�d;�sÞ;
ndð�u;�d;�sÞ ¼

Z �u

u0ð�d;�sÞ
d�0

u@�d
nð2Þu ð�0

u;�d;�sÞ

þ nð2Þd ð�u ¼ u0;�d;�sÞ;
nsð�u;�d;�sÞ ¼

Z �u

u0ð�d;�sÞ
d�0

u@�s
nð2Þu ð�0

u;�d;�sÞ

þ
Z �d

d0ð�sÞ
d�0

d@�s
nð2Þd ðu0ð�0

d;�sÞ;�0
d;�sÞ

þ nð2Þs ð�u ¼ u0;�d ¼ d0;�sÞ; (64)

where the functions nð2Þi are defined so that they contain no
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FIG. 4 (color online). The renormalization scale dependence of the massless quark number density and pressure for perturbation
theory to order Oð�1

sÞ and Oð�2
sÞ (light and dark shaded regions, respectively), with �MS ¼ 0:378 GeV and �� ranging from � (right

boundary) to 4� (left boundary). The dashed (full) lines correspond to the first (second) order results with �� ¼ 2�.
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terms beyond Oð�2
sÞ, and u0 and d0 are free integration

functions. For reasons discussed in Sec. IVA—and to
better facilitate comparison with the massless case—the
renormalization scale is taken to be of the form

�� / �s þ�u þ�d

3
; (65)

where the canonical choice of two for the proportionality
constant will be varied by a factor of 2 to test how strongly
our result depends on this choice.

In this work, we consider deconfined quark matter that is
locally charge neutral and in beta equilibrium.3 Chemical
equilibrium is reached via the weak processes

d ! uþ eþ ��e; uþ e ! dþ �e;

s ! uþ eþ ��e; uþ e ! sþ �e;

sþ u $ dþ u;

which imply the conditions

�s ¼ �d � �; �u ¼ ���e; (66)

with �e being the electron chemical potential. The contri-
bution of the neutrinos has been neglected here because for
the quasistatic compact star systems we have in mind,
neutrinos escape quickly, as their mean free path is con-
siderably larger than the physical size of the system. Local
charge neutrality on the other hand relies on the presence
of electrons and leads to the relation

2
3nu � 1

3nd � 1
3ns � ne ¼ 0; (67)

where ne ¼ �3
e=ð3�2Þ is the electron density. Solving

Eq. (67) with Eq. (66) fixes the electron chemical potential
�e as a function of �.

The above constraints of beta equilibrium and charge
neutrality enable us to simplify the expressions of Eq. (64)
significantly. Namely, for a very particular choice of the
integration functions d0 and u0, d0ð�sÞ ¼ �s and
u0ð�d;�sÞ ¼ �s ��eð�d;�sÞ, we see that each of the
integral terms in Eq. (64) vanishes on the one-dimensional
curve in �i space where both beta equilibrium and charge
neutrality are maintained. In this physical subspace—and,
in particular, when calculating�eð�d;�sÞ from Eq. (67)—

we may use the truncated expressions nð2Þi for all quark
flavors,

nuð�; ��Þ ¼ nð2Þu ð���eð�Þ; �;�Þ þOð�3
sÞ;

ndð�; ��Þ ¼ nð2Þd ð���eð�Þ; �;�Þ þOð�3
sÞ;

nsð�; ��Þ ¼ nð2Þs ð���eð�Þ; �;�Þ þOð�3
sÞ;

(68)

where we have emphasized the dependence of the result on
�� by explicitly reinstating it as an argument of the func-
tions. In these results, we will again set ni ¼ 0 whenever
the number density in question becomes negative. We also
note that while in our starting point Eq. (64) we chose nu
rather than nd or ns as the fundamental quantity, our end
result Eq. (68) treats all flavors in a symmetric fashion.
In terms of the above results, the total quark number

density is finally given by

nð�; ��Þ ¼ nuð�; ��Þ þ ndð�; ��Þ þ nsð�; ��Þ; (69)

while the pressure and energy density are evaluated
through

Pð�; ��Þ ¼ �Bþ
Z �

�0ð ��Þ
d�

�
nu

�
1� d�eð�Þ

d�

�
þ nd

þ ns þ ne
d�eð�Þ
d�

�
;

"ð�; ��Þ ¼ �Pð�; ��Þ þ�ðnu þ nd þ nsÞ
��eð�Þðnu � neð�ÞÞ; (70)

in analogy with the massless quark case, cf. Eqs (62) and
(63). Note that the contribution coming from the electron
number density in the above equations is rather small.
In Fig. 5, we display our result for the total quark

number density in cold deconfined quark matter as a func-
tion of the d quark chemical potential �, and compare it to
the cases of two and three massless quark flavors (for
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FIG. 5 (color online). The total quark number density eval-
uated to Oð�2

sÞ for locally charge neutral systems of 2 and 3
massless quark flavors, as well as for the two light and one
massive flavor case (2þ 1). All results are normalized to the
density of three free massless flavors 3�3=�2, and assume the
values �MS ¼ 0:378 GeV, mð2 GeVÞ ¼ 0:1 GeV, while the re-

normalization scale takes the values 3 ��=ð�u þ�d þ�sÞ ¼ 1,
2, 4 (for Nf ¼ 2, 2 ��=ð�u þ�dÞ ¼ 1, 2, 4). As expected, the

2þ 1 flavor result matches the three flavor result at large � and
approaches the two flavor result at small �.

3Relaxing the assumption of local charge neutrality to a global
one in systems with a mixed phase is typically only a minor
effect in comparison with the renormalization scale dependence
[56].
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which beta equilibrium and charge neutrality require that
�e ¼ 0 for Nf ¼ 3, but �e � 0 for Nf ¼ 2). Upon com-

parison with the two-loop Oð�sÞ result (not shown in the
plot), we find that perturbation theory exhibits convergence
for �> 1 GeV, in analogy with the massless case.
Somewhat visible in Fig. 5 are kinks at the critical chemi-
cal potentials at which the strange quark density drops to
zero, and below which the quark matter is net strange quark
free. We suspect that this is simply a consequence of not
having enough energy to produce strange quarks with a
nonvanishing in-medium mass: The chemical potential is
required to satisfy the condition �>mmediumð�sÞ, where
the parametermmediumð�Þ can be evaluated by studying the
effects of the finite chemical potential on the poles of a
massive quark propagator. A study of the one-loop quark
self-energy at finite temperature was recently performed in
Ref. [57] (cf. [58]), and a simple generalization of these
results to finite � shows that for g� � M � �, the mass
can be approximated by the formula

mmediumð ��; �Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 8�s

3�
�2

s
þOð�2

sÞ>m: (71)

This leads us to argue that the chemical potential at which
the strange quark density vanishes does not need to receive
large nonperturbative corrections, as instead of confine-
ment physics only energy conservation is involved in the
mechanism. As a consequence, we can expect perturbative
results to give quantitatively reasonable estimates for this

critical chemical potential, at least if ��> 1 GeV at this
point (cf. the discussion in Sec. II B).

Moving up on the chemical potential axis, we note that
for � * 1 GeV, the strange quark mass becomes unim-
portant and one recovers the result of three massless fla-
vors, as discussed in Sec. IVB. Interestingly, studying the
Oð�0

sÞ andOð�sÞ quark number densities, one observes the
trend that the effects of the strange quark mass become less
important with increasing perturbative order. This indi-
cates that accounting for the interactions accurately in
fact makes the QCD EOS less sensitive to the quark
masses, which we suspect may well generalize to further
perturbative orders as well.

V. STRANGE QUARK MATTER AND THE PHASE
TRANSITION

In this section, we will use the results derived above to
investigate two mutually exclusive scenarios: The proper-
ties of absolutely stable strange quark matter and the onset
of the confinement transition from deconfined quark matter
to the hadronic phase. In both of these cases, we will
evaluate the EOS for bulk matter (in contrast to systems
of finite size), which is the relevant setting for the astro-
physical applications considered in Sec. VI. In the strange
quark matter calculation, our main goal will be to sweep
the parameter space of the theory to find out if there is a

region that allows for the existence of stable strange quark
matter, while for the confinement phase transition case we
will investigate if there are density windows that allow for
a smooth matching of the quark matter and hadronic EOSs.
For completeness—and to better describe real world

finite density quark matter in beta equilibrium—we will
include in our EOS a contribution modeling the effects of
color superconductivity (CSC). This is accomplished by
adding to the pressure a term accounting for the condensa-
tion energy of Cooper pairs in the color-flavor-locked
phase (see, e.g., Refs. [22,59,60]),

PCSC � �2�2
B

3�2
; (72)

where the baryon chemical potential is �B � �u þ�d þ
�s and the gap parameter � approaches at asymptotically
high densities the form [61]

� ¼ b�

ð4��sÞ5=2
e�3�2=

ffiffiffiffiffiffiffiffiffi
8��s

p
; (73)

with b a constant. In this work, � itself will for simplicity
be assumed to be a constant, which suffices to at least
estimate the magnitude of the CSC effects. We will in each
case study the values � ¼ 0 (corresponding to normal,
unpaired quark matter) and � ¼ 100 MeV, of which the
latter can be viewed as an upper limit for the size of the
gap. It should also be noted that while Eq. (72) in principle
obtains corrections due to the finiteness of ms, the con-
densation term has its largest value in the ms ¼ 0 limit.
Thus, Eq. (72) serves the purpose of indicating the maxi-
mal effect that quark pairing may have on the EOS of the
system. A more detailed and realistic inclusion of the effect
of pairing is left for future work.

A. Strange quark matter hypothesis

Stable strange quark matter configurations in vacuum
can exist if there is a (strange) quark chemical potential �
for which the strange quark density in the system is non-
zero, while the pressure is vanishing and the energy per
baryon

E=A � "ð�; ��Þ=nBð�; ��Þ; (74)

is lower than for the most stable nucleus [18] (56Fe and
62Ni),

E=A � 0:93 GeV: (75)

Here, the baryon density is related to the total quark
number density n via nB ¼ n=3. If stable strange quark
matter were to exist, ordinary nuclear matter (made up of
up and down quarks) would be only metastable, with a
lifetime determined by the probability to generate strange
quarks via several simultaneous weak interactions [62]. In
particular, this would imply that nuclei with baryon num-
ber A * 6 would have a lifetime of �1060 years [18],
consistent with current observations. In contrast, stable
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two flavor quark matter (zero strange quark density) is
clearly ruled out by experiment, as it would imply an
extremely small lifetime for ordinary nuclei because no
strangeness needs to be created.

In the following, we will consider the stability criteria
for bulk strange quark matter (A � 1), which is both the
relevant case for astrophysical applications as well as the
most stable configuration (finite size effects for small A
only make strange quark matter more unstable [18]). We
will also only consider quasistatic configurations, where
beta equilibrium is maintained and the system is locally
electrically neutral, of which the latter requirement follows
from the fact that for strange quark matter no hadronic
admixture can be present. Hence, we will require

Pð2Þð�; ��Þ þ PCSCð�Þ ¼ 0, where the three-loop pressure

for 2þ 1 flavor quark matter, Pð2Þ, is taken from Sec IVC
and PCSC from Eq. (72). In addition, we will naturally
enforce the condition that the density of strange quarks is
nonzero.

In practice, we sweep through the parameter space of the
theory as follows. For both � ¼ 0 and � ¼ 100 MeV, we

vary the renormalization scale ��, the MS scale �MS, as

well as the strange quark mass m in the ranges 3 ��=ð�u þ
�d þ�sÞ ¼ 1 . . . 4, �MS ¼ 0:378þ 0:034� 0:032 GeV

and mð2 GeVÞ ’ 0:100� 0:030 GeV. At each point of
this parameter space, we first search for the smallest value
of � for which the nonzero strangeness condition

nsð�; ��Þ> 0 is fulfilled, which also corresponds to the
minimal value of E=A. After determining the value of the
latter quantity, we then choose B> 0 so that the stability
criterion P ¼ 0 is satisfied. It turns out that these con-
straints imply that our results do not probe physics below

�� ’ 0:95 GeV, which gives us confidence in our method.
We find that for � ¼ 0 strange quark matter is either
unstable (E=A > 0:93 GeV) or violates experimental evi-
dence (ns ¼ 0) for most parts of the above uncertainty
ranges, while a finite value for the gap parameter has the
effect of relaxing the constraints significantly
(cf. Refs. [63,64] for similar conclusions). These effects
are summarized in the exclusion plots of Fig. 6.
The conclusions one can draw from the above results are

clearly strongly dependent on whether one considers � ¼
0 or � ¼ 100 MeV. While the former case suggests a
rather hostile parameter space for stable strange quark
matter, perhaps offering an explanation for the absence
of experimental evidence for it in direct searches [65–
68], in the CSC case our results are inconclusive. Thus,
within the current uncertainties of the different parameter
values, we can neither confirm nor rule out the existence of
strange quark matter. Alternatively, if stable strange quark
matter is indeed realized, then the restricted parameter
space allows us to set limits on its properties,4 as we will
observe in the next section where we consider the masses
and radii of dense stars made up of strange quark matter.
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FIG. 6 (color online). Exclusion plots of stable strange quark matter, where the smallest possible value of E=A (required to be lower
than 0.93 GeV for stability) is plotted as a function of the parameters of the theory. Here the value of �MS is fixed since reducing it

corresponds to linearly increasing ��=ð�u þ�d þ�sÞ. The effect of varying 4 can be seen by comparing the left and right figure.
Left: Normal (unpaired) stable strange quark matter can only occur for comparatively large values of the renormalization scale. Right:
The incorporation of the effects of the CSC gap significantly increases the allowed parameter space.

4It has been noted in the literature (see, e.g., Ref. [28]) that for
massless strange quark matter at high density, the EOS is
extremely well (to the percent level) approximated by the simple
formula

" ¼ 4Beff þ aP; (76)

where Beff is an effective bag constant. In our case, one sees that
a similar ansatz works only in the limit of large energy densities,
but breaks down where the effects of the strange quark mass (as
well the running of �s) become important.
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B. Phase transition from quark matter to hadronic
matter

If strange quark matter is not the true ground state of
nuclear matter, then at some critical chemical potential (or
range of chemical potentials) quarks must become con-
fined into hadrons. In this section, we try to estimate the
location of this confinement/deconfinement transition by
matching our perturbative EOS for quark matter to existing
results for the hadronic EOS. While it is clear that our
framework can never capture the details of the confinement
process itself, it is not excluded that our results could be
used to get a reasonable estimate for the critical chemical
potential. One should contrast the situation to that of high
temperatures and small�, where the matching between the
hadronic and quark gluon plasma EOSs—the latter ob-
tained through resummed perturbation theory—suggests
a location for the deconfinement transition that agrees
reasonably well with lattice data (see Fig. 7). In the case
of small T and high � considered here, a quantitative test
of our predictions will have to await further advances in
nonperturbative solutions to QCD.

To describe zero temperature hadronic matter in beta
equilibrium above nuclear saturation densities, we con-
sider three different EOSs, representing three classes of
physical pictures. These are a nucleonic ‘‘baseline’’ EOS
by Akmal, Pandharipande, and Ravenhall (denoted as
‘‘A18 þ �vþ UIX
’’ in Ref. [69]), an EOS including
kaon condensation by Glendenning and Schaffner-Bielich
(denoted as ‘‘UK ¼ �140 MeV’’ in Ref.[69]), as well as
one including the effects of hyperons by Schulze et al.

(denoted as ‘‘V18 þ UIXþ NSC89’’ in Ref. [71]). We
have selected these three results because they constitute
the most realistic and accurate calculations for the different
physical scenarios,5 in contrast to being ‘‘maximally dif-
ferent’’ as in the selection criteria of Ref. [19].
The matching of hadronic and quark matter EOSs relies

on imposing the following conditions:
(1) At the matching point, the pressure of the hadronic

phase is equal to that of the quark matter phase.
(2) Both the hadronic and quark matter phases are

locally charge neutral.

(3) The speed of sound cs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=d"

p
has to be less

than the speed of light in both phases.
(4) The energy density has to increase monotonically

with baryon chemical potential.
The second of these criteria can be easily relaxed by
considering a two-component system that is only globally
charge neutral [56]. This is, however, only a minor effect in
comparison with the other uncertainties in the calculation,
and we consider it misplaced accuracy to perform a de-
tailed analysis of the two-component phase transition here.
The last two criteria are on the other hand meant to impose
naturalness on the resulting EOS: cs < 1 is required to
maintain causality, and it would be quite bizarre if for
any given � matter composed of nuclei could have an
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FIG. 7 (color online). The matching of perturbative results for the quark matter EOS to hadronic EOSs at high temperature and

density. Left: The pressure at � ¼ 0, obtained from resummed Oð�5=2
s Þ perturbative QCD (pQCD) [4] [using Eq. (9) for �s with

�MS ¼ 0:378 GeV and Nf ¼ 3] and compared with the result of summing up the effects of all hadron resonances with masses smaller

than 2 GeV [32,93]. For a crossover transition, the pQCD results should match smoothly onto the hadronic EOS. The range in �� for
which this is possible corresponds quite well to the transition region determined by lattice QCD [2,94] (the grey band labeled LQCD in
the figure). Right: The T ¼ 0 quark matter pressure, taken from ourOð�2

s Þ result with �MS ¼ 0:378 GeV, mð2 GeVÞ ¼ 0:1 GeV, and

B ¼ 0, compared to three different hadronic EOSs [69,71]. The matching in general involves B � 0 and does not have to be smooth, as
the phase transition at zero temperature could be of first order.

5In the case of kaon condensation, one may argue that UK ¼
�100 MeV to�120 MeVwould be more realistic values for the
potential [72,73], but we were unable to obtain a tabulated EOS
for these cases.
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energy density higher than that of quark matter (except if
nuclei did not correspond to the true ground state of
hadronic matter, cf. Sec. VA). Together with the first
condition, the monotonicity of the energy density also
implies that above the critical chemical potential, the
physical phase is always the one with larger pressure.
This is an important consistency check of our procedure.

In practice, we implement the matching as follows: For
both � ¼ 0 and � ¼ 100 MeV, and any of the three
hadronic EOSs, we first fix �MS and mð2 GeVÞ within

the ranges given in Sec. II B, and then vary �� in its usual
range to determine whether criterion (1) above can be
fulfilled for any (positive or negative) integration constant
B and quark chemical potential. The successful cases are
then subjected to criteria (2)–(4), and the parameter values
and hadronic EOSs that violate any of these are subse-
quently ruled out. As a first result, one observes that

matching is only possible if 3 ��=ð�u þ�d þ�sÞ * 3:3.
Summarizing the results of the matching calculation, we

find that for both normal quark matter (� ¼ 0) as well as
for the CSC case (� ¼ 100 MeV), matching to a hadronic
EOS is only possible in two disjoint density windows: At
low baryon densities, nB & 0:36 fm�3 (case I in the fol-
lowing), where all three hadronic EOSs are degenerate and
above which criterion (4) is violated, as well as at high
baryon densities, nB * 0:64 fm�3 (case II), where match-
ing is only possible to the purely nucleonic EOS and above
which criterion 3 is violated in the hadronic sector. The
matched EOSs of both cases are displayed in Fig. 8, from
where we notice a significant decrease in the uncertainty of
our results in comparison with the unmatched pure quark
matter case of Fig. 7.

For quark chemical potentials above 0.4 GeV, the nucle-
onic EOS differs from the hyperon and kaon EOSs signifi-

cantly. If one is to trust (one of) the latter two—and strange
quark matter is not the true ground state of nuclear mat-
ter—our results suggest a confinement transition from
quark to hadronic matter at or around the density of atomic
nuclei (case I, 0:15 fm�3 & nB & 0:36 fm�3).6 This is
predominantly a consequence of our matching criterion (4)
regarding the monotonic increase of the energy density, as
well as the very high energies (corresponding to half of the
Fermi pressure of a gas of free quarks) predicted by all of
the hadronic EOSs at around nB � 0:16 fm�3. While keep-
ing in mind that the matching process carries sizable
quantitative uncertainties due to the perturbative nature
of our calculation, we note that if the deconfinement tran-
sition at high temperature and low density—where

"ðTÞ="ð0ÞðTÞ & 0:5 in the transition region [2]—is any
guide for the physics at zero temperature, our findings
may after all not be so unreasonable.

VI. ASTROPHYSICS APPLICATIONS

Having obtained EOSs for both stable strange quark
matter as well as hybrid quark/hadronic matter undergoing
a phase transition, we are now finally able to compare our
results to nature. At present, the only available observa-
tional window into the properties of cold and dense nuclear
matter are compact stars, which makes them the natural
application of our results.
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FIG. 8 (color online). The equation of state of hybrid quark matter, obtained by matching the quark matter and nucleonic EOSs at
low (nB & 0:36 fm�3, case I) and high (nB * 0:64 fm�3, case II) densities, respectively. The shaded regions are obtained by varying
��, the integration constant B, and thus also the exact matching point, while keeping �MS and mð2 GeVÞ at their central values 0.378
and 0.1 GeV, respectively.

6One should, however, note that the case I matching can only
be carried out in a rather small region of our parameter space, in
particular, requiring a large value for the renormalization scale
��, and is thus in some sense less robust than case II. We thank
David Blaschke and Thomas Klähn for drawing our attention to
this issue.
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Of special interest for us is the structure of a nonrotating
compact star, in particular, the relation between its mass
and radius, because it is highly sensitive to the details of the
underlying EOS of high density nuclear and/or quark
matter. In addition, the mass-radius relation for a hydro-
static compact star is straightforward to determine in gen-
eral relativity by solving the Tolman-Oppenheimer-
Volkoff equations [74],

dMðrÞ ¼ 4�r2"ðrÞdr;

dPðrÞ ¼ �GðPðrÞ þ "ðrÞÞðMðrÞ þ 4�r3PðrÞÞ
rðr� 2GMðrÞÞ dr:

(77)

Here, G ¼ ð1:22� 1019Þ�2 GeV�2 is Newton’s constant
in natural units and r the radial coordinate of the star, while
the EOS enters through the function "ðPÞ (cf. Fig. 9). In
practice, the Tolman-Oppenheimer-Volkoff equations are
solved by choosing a value for P at the center of the star
(r ¼ 0) and then integrating outwards to the surface, where
the pressure vanishes. The resulting mass and radius can be
calculated for any central pressure allowed by the EOS
under consideration, and differ markedly between the dif-
ferent classes of EOSs.

In Fig. 10, we show the mass-radius relations for several
classes of compact stars, including

(i) Purely nucleonic stars, obeying the EOS of Ref. [69].
(ii) Stars composed of hadronic matter including the

effect from kaon condensation, cf. Ref. [70].
(iii) Stars composed of hadronic matter including nucle-

ons and hyperons, cf. Ref. [71].
(iv) Hybrid stars composed mostly of nucleonic matter

and a small quark core, corresponding to case II of
the previous section.

(v) Hybrid stars composed mostly of quark matter and a
small nucleonic crust, corresponding to case I of the
previous section.

(vi) Strange stars composed of (stable) strange quark
matter.

These cases cover all the different realistic EOSs of had-
ronic and/or quark matter at small and moderate densities,
and, in particular, include both the scenarios of stable
strange quark matter and a confinement transition to the
hadronic phase. Note that the branches for different EOSs
in Fig. 10 could in principle be extended by allowing stars
with higher central densities. These stars are, however,
unstable with respect to radial oscillations [75,76], so we
do not display them in the figure.7

For case I of hybrid stars, the curves shown in Fig. 10
correspond to the maximal value of �, for which matching

is possible using the parameter values 3 ��=ð�u þ�d þ
�sÞ ¼ 4, �MS ¼ 0:378 GeV, and mð2 GeVÞ ¼
0:10 GeV. Varying these numbers in the usual ranges has
a large effect on the radius of the star, while the mass seems
to be quite stable. The effect of varying the chemical
potential at which the matching is performed is depicted
in Fig. 11.
For the case II stars, the effects of the above parameter

variations are considerably smaller, and our predictions
thus more robust. The reason for this is that the structure
of the star is most sensitive to the behavior of the EOS at
relatively low densities, which in case II is uniquely de-
termined by the nucleonic EOS. One should, however, note
that because we did not perform a detailed matching of the
two-component mixture of quark matter and hadrons, in-
cluding, e.g., the effects of quark matter droplets in nuclear
matter, our predictions for the radii of the resulting hybrid
stars may contain sizable uncertainties. As discussed, e.g.,
in Ref. [79], the masses of hybrid stars we obtain should on
the other hand be fairly independent on the details of the
matching process, and can thus be considered accurate.
Corresponding to stars containing only strange quark

matter (‘‘strange stars’’), we show in Fig. 10 the grey

shaded regions obtained by varying ��, �MS, and

mð2 GeVÞ in the usual ranges.8 The large size of these
areas reflects the sizable uncertainty related to the behavior
of the quark matter EOS at low densities. One should note
that the maximal strange star masses are of the order of
2:75M�, with radii in excess of 17 km, in principle offering
a clear signature for the detection of stable strange quark
matter. The general effect of the color superconducting gap
� is to somewhat decrease the largest possible radii of the
stars, leaving the maximal mass basically unchanged.
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FIG. 9 (color online). The functional dependence between the
pressure and energy density, given for a selection of different
EOSs considered in this section.

7The exception to this statement would be the so-called ‘‘third
family’’ of compact stars [77,78], which could occur if the
matching between nuclear and quark matter takes place at
densities above those reached in the center of the maximum
mass neutron star. In our calculation, this possibility is not
realized.

8Note that stars of this type have been considered in the
literature before, using different lower order or resummed per-
turbative EOSs. See, e.g., Refs. [33,80] and references therein.
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In addition to our predictions, we show in Fig. 10 ob-
servational data corresponding to compact star masses
[81–85], which allow one to exclude any EOS that does
not pass through all the measurements. In principle, data on
compact star radii could provide even more stringent con-
straints, but these are also much more difficult to obtain,
and at present no radius measurement exists that is both
precise and unambiguous. Within the next decade, there is
nevertheless hope for the emergence of new data, in par-
ticular, for quiescent and isolated neutron stars [86] that
could improve the situation significantly.

From neutron star mass measurements alone, one can
exclude two classes of hadronic EOSs, namely, those of
condensed kaons and hyperons without phase transitions to
quark matter even at very high densities [70,71] (see
Fig. 10). Interestingly, our calculations for all types of
quark matter EOSs (corresponding to both hybrid stars
and strange stars) as well as for the purely nucleonic
EOS lead to masses that are compatible with current ob-
servations. On one hand, this is unfortunate because it does
not allow us to discriminate between the different physical
scenarios. On the other hand, the fact that our treatment of
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FIG. 10 (color online). The mass-radius relation for compact stars, obtained using � ¼ 0 (left) and � ¼ 100 MeV (right) in the
quark matter EOS. We display the results for purely hadronic stars (containing only nucleons [69], nucleons with kaon condensation
[70], or nucleons and hyperons [71]), pure quark matter stars (strange stars, cf. Sec. VA) and hybrid stars including both hadronic and
quark matter (see text for details). Also shown in the plots are compact star mass observations from Refs. [81–85].

8 10 12 14 16

R [km]

0.5

1

1.5

2

M
/M

so
la

r

Strange stars
Case I hybrids
nucl.+hyperons

µ
pt

=0.99 GeV

µ
pt

=0.945 GeV
µ

pt
=0.96 GeV

8 10 12 14 16 18 20

R [km]

0.5

1

1.5

2

M
/M

so
la

r

nucl.+hyperons
Case I hybrids

∆=0

∆=0.1 GeV

∆=0.05 GeV

µ
pt

=0.975 GeV
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obtained by varying the value of the gap parameter4. Relative to unpaired quark matter (� ¼ 0), CSC generally decreases the radii of
stable stars while the masses are hardly affected.

COLD QUARK MATTER PHYSICAL REVIEW D 81, 105021 (2010)

105021-19



the quark matter EOS naturally (and without any fine-
tuning) leads to compact star masses that are in agreement
with observations is also rather pleasing.

In light of the marked difference between our results
(and hence conclusions) and those of Refs. [79,87], some
remarks are in order. The presence of a finite strange quark
mass leads to a significant stiffening in the EOSs contain-
ing quark matter, which is not captured by either the usual
MIT bag model or the ansatz of Ref. [79], which can be
seen to describe our EOS well only at� * 1 GeV. For this
reason, our calculation results in pure strange stars that can
be more massive than pure hadronic stars, turning the
argument in Ref. [87] on its head (cf. also the discussion
in Ref. [88]). Also, it seems to us that the largest neutron
star masses displayed in Ref. [87] result from nuclear EOSs
that can no longer be considered realistic. Therefore, we
argue that a confirmed determination of a compact star
with a mass in excess of 2M�, as suggested in Ref. [87],
would seem to strongly favor—rather than rule out—the
existence of quark matter in astrophysical objects.

Clearly, our calculations can (and should) be improved
in several ways, and also further astrophysical applications
of our results are possible. Notably, a detailed calculation
of the properties of the two-component system of quark
and hadronic matter in hybrid stars can be performed with
our quark matter EOS, which would allow us to quantita-
tively calculate also hybrid star radii. Furthermore, in this
work the effects of quark pairing were modeled in a rather
crude way, and one could certainly study them in a more
detailed and realistic setting. Finally, our results can also be
used as a basis for studying other astrophysical observ-
ables, such as a compact star’s moment of inertia, as well as
dynamical processes like compact star oscillations and
cooling rates [89]. We hope that our result for the quark
matter EOS will lay the foundations for bringing the same
rigor to compact star core physics than is today routinely
applied to hadronic matter in their crust and surface.

VII. CONCLUSIONS AND OUTLOOK

Investigating the properties of cold and dense QCD
matter with first principles calculations is a notoriously
difficult task. For densities relevant to real world physical
systems, the strong coupling constant is not small, thus
making perturbation theory converge at best slowly, while
lattice QCD simulations are inapplicable due to the infa-
mous sign problem. Up until now, most studies of such
systems have been performed using phenomenological
models, most importantly the MIT bag model, where the
effects of the QCD interactions are only visible in a single
constant that is added to the grand potential of a system of
free quarks and gluons. If one aims at a quantitative
description of the physics of cold quark matter, such a
crude approach is clearly inadequate.

In the paper at hand, we have tackled the challenge of
performing first principles calculations for zero tempera-
ture QCD matter using the machinery of perturbation
theory. To gain better understanding of the thermodynam-
ics of the system, and, in particular, of the effects of a finite
strange quark mass, we have performed an Oð�2

sÞ evalu-
ation of the equation of state of T ¼ 0 quark matter, keep-
ing both the quark chemical potentials and the strange
quark mass nonzero. We feel that such a calculation was
long overdue for several reasons. On one hand, the existing
Oð�sÞ results available for the massive EOS exhibit a
sizable dependence on the renormalization scale and offer
very few possibilities for analyzing the convergence of the
expansion—issues that can only be addressed by comput-
ing the next perturbative order for the quantity. In addition,
in most of the practical applications of our results, the
density of the matter is not large enough to warrant the
approximation ms � �, thus leaving the door open for
significant quark mass effects [33].
Our main result for the EOS of cold, deconfined quark

matter with an arbitrary number of massless and one
massive quark flavor can be found in Sec. III E, and has
been analyzed in Sec. IV. As expected, our result for the
2þ 1 flavor case smoothly interpolates between the results
of two and three massless flavors in the limits of low and
high �, making the quark mass effects clearly visible. The
ambiguity related to the choice of the renormalization scale
is still sizable, but already at �� 1 GeV clearly smaller
than in the two-loop result. Investigating the effects of the
strange quark mass, we find an interesting trend indicating
that they become smaller with increasing perturbative or-
der, suggesting that the EOS becomes less sensitive to ms

when interactions are correctly accounted for.
As physical applications of our result, we studied the

(mutually exclusive) scenarios of stable strange quark
matter as well as a confinement transition between quark
matter and hadronic matter. Normal unpaired strange quark
matter turned out to be stable only for large values of the

renormalization scale ��, in addition to which one needs to
have relatively low values for both the strange quark mass

and theMS scale parameter �MS. Incorporating the effects

of quark pairing by adding to the pressure a term account-
ing for the condensation energy of the Cooper pairs, we on
the other hand found that the constraints on stable strange
quark matter were considerably relaxed.
To study the hadronic-to-quark-matter deconfinement

transition, we matched our quark matter EOS to various
hadronic EOSs, including purely nucleonic matter as well
as nuclear matter in the presence of hyperons or kaon
condensation. We found the physical requirements for a
successful matching to restrict the behavior of the EOS
considerably, discovering two distinct density windows
where matching was possible: The ‘‘low �’’ region nB &
0:36 fm�3 and the ‘‘high �’’ region nB * 0:64 fm�3.
Interestingly, we were unable to match the quark matter
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EOS to either the hyperon or kaon condensation EOS in the
high � region. Thus, if we assume these hadronic EOSs to
correctly describe nature, we must conclude that the de-
confinement transition takes place at or around the density
of nuclear matter nB � 0:16 fm�3.

Finally, we applied the various EOSs to describe non-
rotating compact stars, investigating the mass-radius rela-
tions following from the different cases. Using reliable
observations for the masses of the stars, we found that it
is possible to rule out the cases of hyperon stars as well as
stars with kaon condensation, in accordance with earlier
findings [71]. Conversely, EOSs with a transition to decon-
fined quark matter can without any fine-tuning accommo-
date compact star masses close to 2M�—close to the upper
limit of confirmed observations—and up to 2:75M� for
pure strange stars. Similar results for hybrid stars were also
reported in Ref. [79].

While our evaluation of the Oð�2
sÞ EOS for zero tem-

perature quark matter has evidently opened the door for a
plethora of physics applications, it is clear, in particular,
from the sizable renormalization scale dependence of our
result—often overwhelming the uncertainties in the experi-
mental values of ms and �MS—that an extension of the

calculation to include four loop contributions would be
desirable. Although the full �3

s computation seems quite
demanding, a meaningful and considerably more straight-
forward challenge would be to determine the coefficient of
the Oð�3

s ln�sÞ term in the expansion, which originates
from the IR sensitive ring diagrams. This term would in
fact only require a numerical evaluation of the two-loop
gluon polarization tensor, a task of difficulty comparable to
the calculation we have performed in this work. In addition
to simply extending the region of validity of the current
calculation, this result would allow one to apply new
optimization schemes for the renormalization scale, thus
hopefully significantly decreasing the uncertainty involved
in its choice.

Finally, the physics of cold quark matter can naturally
also be tackled in various other ways apart from purely
perturbative calculations. As we have tried to highlight in
Sec. IV, the calculation performed here can be used as an
ingredient in several models, with an obvious example
being the replacement of the simple MIT bag model by
our three-loop EOS. To this end, we have attempted to
make our results as accessible as possible, presenting them
in terms of simple fitting functions above, and making all
of them electronically available [90].
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APPENDIX A: THE ONE-LOOP GLUON
POLARIZATION TENSOR

Several parts of the derivation of the grand potential,
presented in Sec. III, relied on various properties of the
one-loop gluon polarization tensor at zero temperature and
finite density. To this end, we will in this first Appendix
review what is known about this quantity.
The one-loop gluon polarization tensor is defined by the

graphs of Fig. 3(a). We divide the function into its vacuum
(T ¼ � ¼ 0) and matter (vacuum subtracted) parts
through

���ðKÞ ¼ �
��
vacðKÞ þ�

��
matðKÞ; (A1)

where we have suppressed the trivial color indices, noting
that both parts of the tensor are proportional to �ab. A
result that proves quite helpful in evaluating the VM graphs
is the simple form, in which one can write the vacuum
tensor, evaluated with Nl massless and one massive quark
flavor. A straightforward computation leads to the result

�
��
vacðKÞ ¼ �vac

�
m2

K2

�
g2

ð4�Þ2
�
�2

K2

�
�ðK�K� � K2���Þ;

(A2)

where the function �vac can be written in the form

�vac

�
m2

K2

�
¼ �25�2d�ð7�dÞ=2fð3d� 2ÞCA � 2ðd� 2ÞNlg

� cscð�d=2Þ
�ððdþ 1Þ=2Þ � 26�d�ð4�dÞ=2�ð2� d=2Þ

�
Z 1

0
dxðxð1� xÞÞd=2�1

�
1þ m2=K2

xð1� xÞ
�
d=2�2

� f0 þ f1

�
m2

K2

�
: (A3)

Here, f0 and f1 refer to the first (constant) and the second
(one-dimensional function) term of �vac, respectively.
For the matter part of the tensor, we on the other hand

obtain, e.g., from Ref. [49]
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�00
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; (A4)

where the sum is overNl massless flavors with ui ¼ �i and one massive flavor with uNf
¼ u. After a considerable amount

of algebra, the remaining integrals in �
��
mat may be evaluated analytically, giving [49]

�00
matðK;�Þ ¼ � g2

2�2

XNf

i¼1

�
2�u

3
� K2

6
sin2� ln

�þ u

m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ K2

p
ð2m2 � K2Þsin2�
24K

� ln
2m4 cos2�þ ð2m2 þ K2Þð2�2 �m2Þ � 2u�K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ K2

p

2m4 cos2�þ ð2m2 þ K2Þð2�2 �m2Þ þ 2u�K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ K2

p þ �

K sin�

�
�2

6
� K2

8

�

� ln
4�2cos2�þ ðK þ 2u sin�Þ2
4�2cos2�þ ðK � 2u sin�Þ2 �

�2K2 þ 12�2 þ K2 cos2�

24 tan�

�
�
�

2
� arctan

2ð2�2 �m2Þ cos2�þ K2 þ 2m2

4u� sin2�

��
; (A5)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ K2

p

2m4 cos2�þ ð2m2 þ K2Þð2�2 �m2Þ þ 2u�K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ K2

p þ�ð2m2 � K2Þ
4K sin�

� ln
4�2cos2�þ ðK þ 2u sin�Þ2
4�2cos2�þ ðK � 2u sin�Þ2 þ

K2 � 2m2

4 tan�

�
�

2
� arctan

2ð2�2 �m2Þ cos2�þ K2 þ 2m2

4u� sin2�

��
;

(A6)

where � � arctan k
k0
, and in the sum it should be under-

stood that m ¼ 0 for the Nl light flavors. It is also useful to
consider the limits

lim
K!1�

00
matðK;�Þ ¼ � g2

2�2

sin2�

3K2

XNf

i¼1

�
�uðm2 þ 2�2Þ

� 3m4 ln
�þ u

m

�
; (A7)

lim
K!0

�00
matðK;�Þ ¼ � g2

2�2

�XNf

i¼1

�
�u��2 cot� arctan

u

� cot�

�
;

(A8)

lim
K!1ð�matÞ��ðK;�Þ ¼ � g2

2�2

XNf

i¼1

�
�uð7m2 þ 2�2Þ

12K2
þ 4

3

� �u3 cos2�

K2
� 3

4

m4

K2
ln
�þ u

m

�
;

(A9)

lim
K!0

ð�matÞ��ðK;�Þ ¼ � g2

2�2

XNf

i¼1

�
�u

�m2 cot� arctan
u

� cot�

�
; (A10)

which can be used to show that the plasmon ring sum of
Eq. (55) is both UV and IR finite.
Finally, we note that upon separation of the contribu-

tions of the massless and massive quark flavors to �
��
mat,

one can decompose the combinations F and G, defined in
Eq. (50), in the forms

� 4�2g�2GmatðK;�Þ ¼ �2GhðK̂;�; m̂Þ

þXNl

i¼1

�2
i Gl

�
K

�i

;�

�
;

�2�2g�2FmatðK;�Þ ¼ �2FhðK̂;�; m̂Þ

þXNl

i¼1

�2
i Fl

�
K

�i

;�

�
;

(A11)
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where K̂ � K=�, Glð0;�Þ ¼ �cot��cos2�
sin2�

, and Flð0;�Þ ¼
1��cot�
sin2�

(cf. the Appendixes of Ref. [30]).

APPENDIX B: THE MASSIVE 2GI GRAPHS

In this Appendix, we will go through the evaluation of
the massive 2GI graphs of Sec. III B 2 in detail, filling in
the pieces missing from our earlier discussion.

1. Scalarization

The first step in evaluating the diagrams a–d of Fig. 2 is
to perform all the Lorentz and color algebra associated
with them and write them in terms of the scalar topologies
D1–D5 of Fig. 12. The procedure can be automatized with

the program FORM [91], and leads to the results

Da ¼ dAg
2
B

�
2m2D4

m m 0
1 1 1

� �
� ð1� �Þ

�
D5

m
1

� ��
2
�
;

(B1)

Db ¼ dACAg
4

�
2m2D2

m m m 0 0

1 1 1 1 1

 !

þ ð1� �ÞD3

m m 0 0

1 1 1 1

 !

� 2ð1� �ÞD4

m m 0

1 1 1

 !
D5

m

1

 !�
; (B2)

Dc ¼ dACFg
4

�
�2ð1� �Þ2D1

m m m 0 0 0

1 1 1 1 1 �1

 !
þ 4m2D2

m m m 0 0

1 1 1 1 1

 !
� 8m4D2

m m m 0 0

1 1 2 1 1

 !

� 2ð1� �Þ2D3

m m 0 0

1 1 1 1

 !
þ 4ð1� �Þ2D4

m m 0

1 1 1

 !
D5

m

1

 !
þ 8ð1� �Þm2D4

m m 0

2 1 1

 !
D5

m

1

 !

� 2ð1� �Þ2
�
D5

m

1

 !�
2
D5

m

2

 !�
; (B3)

Dd ¼ dA

�
CF � 1

2
CA

�
g4
�
�4m4D1

0 m m 0 m m

1 1 1 1 1 1

 !
þ 2ð1� �ÞD1

0 m m 0 m m

�1 1 1 1 1 1

 !

þ 4m2D2

m m m 0 0

1 1 1 1 1

 !
� 4m2�D2

m m 0 m m

1 1 1 1 1

 !
� 2�ð1� �ÞD3

m m 0 0

1 1 1 1

 !

þ ð2� �� �2ÞD3

m m m m

1 1 1 1

 !
� 8ð1� �ÞD4

m m 0

1 1 1

 !
D5

m

1

 !�
; (B4)

where the appearance of the gB in Da reminds us that it
should eventually be replaced by the renormalized cou-
pling constant.

In the above expressions, we have used a compact
notation, in which the functions D1, D2, D3, D4 and
D5 refer to the scalar topologies of Fig. 12. In each case,

a lower index at position k indicates the power of the
propagator k in the figure, and the corresponding upper
index gives the mass of the line in question, so that e.g. the
two-loop graph of Fig. 12 with two massive and one
massless lines, with the massless one raised to power
two, would read

FIG. 12. The topologies resulting from the scalarization procedure. Our notation for the functionsDi from Eqs. (B1) onwards is such
that a lower index at position k indicates the power of the propagator k in the figure, while the corresponding upper index gives the
mass of the line in question, with c indicating that the line has been cut. For the uncut graphs, the chemical potential is present in each
massive propagator, but not in the massless ones.
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D 4
m m 0
1 1 2

� �
¼
Z �1þi�

�1þi�
dp0

Z dd�1p

ð2�Þd�1

Z �1þi�

�1þi�
dq0

Z dd�1q

ð2�Þd�1

� 1

ðp2
0 þ p2 þm2Þðq20 þ q2 þm2Þððp0 � q0Þ2 þ ðp� qÞ2Þ2 : (B5)

The chemical potential is naturally present in each mas-
sive propagator, but not in the massless ones, and therefore
the massive scalar lines carrying � will be referred to as
‘fermionic’ below. Each scalar graph we encounter can be
viewed as containing exactly one solid fermion loop, the
orientation of which we are free to choose. We make the
choice of following the numbering of the propagators in
Fig. 12, so that � is always flowing in the direction of
increasing propagator number.

2. Cutting of the graphs

Next, we proceed to apply the cuts, introduced in
Sec. III B 2, to the above 2GI diagrams, and list the results
obtained after performing one, two, and three cuts on the
graphs. The cutting should be thought of just a bookkeep-
ing tool, helping us to keep track of the various contribu-
tions to the grand potential. The correctness of the
procedure can be verified by explicitly performing all the
energy integrations in the graphs.

a. Single-cut diagrams

Cutting always exactly one of the fermionic lines in
Eqs. (B1)–(B4), we obtain the following results, where
the symbol c indicates that the corresponding massive
line in the diagram has been cut:

D1c
a ¼ �dAg

2
B

2ð3� �ð5� 2�ÞÞ
1� 2�

D5
m
1

� �
; (B6)

D1c
b ¼dACAg

4

�
2ð3�12�þ14�2�4�3Þ

ð1�2�Þ2 D3

m m 0 0

c 1 1 1

 !

þ 12ð1��Þ3
ð1�2�Þ2m2

�
D5

m

1

 !�
2
�
; (B7)

D1c
c ¼dACFg

4

�
�2ð3�2�Þð1þ��4�2Þ

1�4�
D3

m m 0 0

c 1 1 1

 !

þð1��Þ2ð3�2�Þð7�14�þ8�2Þ
ð1�2�Þ2m2

�
D5

m

1

 !�
2

þ8m4

�
@

@ ~m2
D2

m m ~m 0 0

1 1 c 1 1

 !�

�8ð1��Þm2

�
@

@ ~m2
D4

~m m 0

c 1 1

 !�
D5

m

1

 !

þ2ð3�5�þ2�2Þ2
ð1�2�Þ2

�
D5

m

1

 !�
2 @

@ ~m2

�
; (B8)

D1c
d ¼ dA

�
CF � 1

2
CA

�
g4
�
�ð1þ �Þð1� 2�Þð2þ �� 2�2Þ

�2

�D3

m m m m

c 1 1 1

 !

þ 4ð2� 11�þ 15�2 þ �3 � 14�4 þ 8�5Þ
�ð1� 2�Þð1� 4�Þ

�D3

m m 0 0

c 1 1 1

 !

� 3ð1� �Þ3ð1þ 2�Þð1� 4�Þ
�2ð1� 2�Þ2m2

�
D5

m

1

 !�
2
�
: (B9)

The terms with a mass derivative originate from integrals
with squared lines, and in them it is assumed that ~m is set
equal to m after performing the differentiation. In the last
term of Eq. (B8), the derivative is acting only on the
integration measure of the external p integration. It should
be recalled that in all the integrals appearing on the right-
hand side of these equations (including D5), the chemical
potential has been set to zero.
In deriving the above expressions, we have used the

symmetry of the graphs in equating terms where a distinct,
but topologically equivalent propagator has been cut. We
have also used the FIRE algorithm [43] to simplify the final
result by finding relations between the various two-point
functions originating from the cuts.

b. Double-cut diagrams

Continuing to use the same notation as above, we obtain
for the double-cut diagrams

D2c
a ¼ dAg

2
B

�
2m2

ðP�QÞ2 � 1þ �

�
; (B10)

D2c
b ¼ dACAg

4

�
2m2D2

m m m 0 0

c c 1 1 1

 !

þ ð1� �ÞD3

m m 0 0

c c 1 1

 !
� 2ð1� �Þ

1� 2�

�
�
3� 2�

ðP�QÞ2 �
2ð1� �Þ

m2

�
D5

m

1

 !�
; (B11)

ALEKSI KURKELA, PAUL ROMATSCHKE, AND ALEKSI VUORINEN PHYSICAL REVIEW D 81, 105021 (2010)

105021-24



D2c
c ¼ dACFg

4

�
2ð2ð1� 2�Þm2 � ð1� �Þ2ðP�QÞ2ÞD2

m m m 0 0

c c 1 1 1

 !
� 2

�
ð1� �Þ2

� 4ð1� 2�Þm2

ðP�QÞ2
�
D3

m m 0 0

c c 1 1

 !
� 2ð1� �Þ

1� 2�

�ð1� �Þð3� 2�Þ�
m2

þ 4

ðP�QÞ2 � 2ð3� 2�Þ

�
�
1� �� 2m2

ðP�QÞ2
�

@

@ ~m2

�
D5

m

1

 !
þ 16m4

�
@

@ ~m2
D2

m m ~m 0 0

c 1 c 1 1

 !�

� 8ð1� �Þm2

��
@

@ ~m2
D4

~m m 0

c c 1

 !�
D5

m

1

 !
þ
�

@

@ ~m2
D4

~m m 0

c 1 1

 !���
; (B12)

D2c
d ¼ dA

�
CF � 1

2
CA

�
g4
�
�4m2

�
m2D1

m m 0 m m 0

c 1 1 c 1 1

 !
þm2D1

m m 0 m m 0

1 c 1 1 c 1

 !

�D2

m m m 0 0

c c 1 1 1

 !�
�
�
2� 6�þ 3�2 þ �3

�
� 4ð1� 2�Þm2

ðP�QÞ2
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D3

m m m m

c 1 c 1

 !

þD3

m m m m

1 c 1 c

 !�
þ 1

2�

�
8m4

ðP�QÞ2ðPþQÞ2 þ
8ð1� �Þ2m2

ðPþQÞ2 þ ð2� 3�þ 3�2 � 2�3Þ
�

�
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D3

m m m m

c c 1 1

 !
þD3

m m m m

c 1 1 c

 !
þD3

m m m m

1 c c 1

 !
þD3

m m m m

1 1 c c

 !�

� 2ð1� �Þ�D3

m m 0 0

c c 1 1

 !
þ 4ð1� �Þ

ð1� 2�Þ�m2

�
4ð1þ �Þð1� 2�Þm4

ðP�QÞ2ðPþQÞ2 � 4�2m2

ðP�QÞ2 þ
ð4� �Þð1� 2�Þm2

ðPþQÞ2

þ 2�ð1� �Þ
�
D5

m

1

 !�
: (B13)

In terms where a squared propagator has been cut, it is
understood that the momentum flowing along that line is P,
so the external mass derivative on the fourth line of
Eq. (B12) only acts on the external p integration measure.

c. Triple-cut diagrams

For three cuts, the two-loop graph in Fig. 2(a) naturally
vanishes, so we are only left with the diagrams of Figs. 2(b)
–2(d). For these, we obtain

D3c
b ¼ dACAg

4

�
2m2

ðP�QÞ2ðP� RÞ2 �
2ð1� �Þ
ðP�QÞ2

�
; (B14)

D3c
c ¼ dACFg

4

�
�2ð1� �Þ2ðQ�RÞ2

ðP�QÞ2ðP�RÞ2

þ 4m2 þ 8m4 @
@ ~m2

ðP�QÞ2ðP�RÞ2 þ
4ð1� �Þ2 � 8ð1� �Þm2 @

@ ~m2

ðP�QÞ2

þ 2ð1� �Þ2 @

@ ~m2
þ 8m4

�
@

@ ~m2
D2

� m m ~m 0 0

c c c 1 1

 !�
� 8ð1� �Þm2

�
�

@

@ ~m2
D4

~m m 0

c c 1

 !��
; (B15)

D3c
d ¼ dA

�
CF � 1

2
CA

�
g4

�
� �16m4

ðP�QÞ2ðP� RÞ2ððP�Q� RÞ2 þm2Þ
þ 8ð1� �ÞðP�QÞ2

ðP� RÞ2ððP�Q� RÞ2 þm2Þ
� 16�m2

ðP�QÞ2ððP�Q� RÞ2 þm2Þ
þ 4m2

ðP�QÞ2ðP� RÞ2 þ
4ð2� �� �2Þ

ðP�Q� RÞ2 þm2

� 8ð1� �Þ
ðP�QÞ2

�
; (B16)

where it is again understood that whenever a squared
propagator has been cut, the momentum flowing along
that line is chosen as P.

d. Collecting results

Simplifying the above formulas with the help of
Eqs. (28) and (31) as well as Appendixes D and E, we
finally arrive at the following expressions for the one-,
two-, and three-cut parts of the 2GI graphs:
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�m;1c
2GI
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ð4�Þ4 ; (B17)

�m;2c
2GI

V
¼ �dAf2m2I2 � I21gg2ð ��Þ � dA

�
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3
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3
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��
�þ I10 þ ð�4I21 þ 8m2I2Þ ln
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m
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�
I11 þ ½24ðm2I2 �m2I1bI1 þ 2m4I2bÞ

þ 48m4I8
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�
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��
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3
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þ 4

3
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��
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3
I21

��
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ð4�Þ2 ; (B18)

�m;3c
2GI

V
¼ dAfCA½2I1I2 � 4I5 þ 8m4I6 � 4I7


þ CF½2I21I1b � 4I1I2 � 8m2I1I2b þ 8m2I3

þ 8m4I3b � 2I4 þ 8I5 � 16m4I6 þ 8I7

� 8m2I1I8 þ 8m4I9
gg4ð ��Þ: (B19)

In these expressions, the coupling g and the quark mass m
now correspond to the physical, renormalized quantities,
and the In’s again denote integrals defined in Appendix D.

APPENDIX C: THE VM GRAPH

Here, we go through the evaluation of the vacuum-
matter diagrams �m

VM and �x
VM in detail. Starting from

the massive VM graph �m
VM, we first perform the Lorenz

algebra and obtain

�m
VM

V
¼�2dA

g4

ð4�Þ2 �
2�

�
2m2

�
f0D4

m m 0

1 1 1þ �

 !

þ ~D4

m m 0

1 1 1þ �

 !�

� ð1� �Þ
�
f0D4

m m 0

1 1 �

 !
þ ~D4

m m 0

1 1 �

 !�

þ 2ð1� �Þ ~D5

0

1þ �

 !
D5

m

1

 !�
; (C1)

where the tilde implies that the integrand in the scalar
graph has been multiplied by the function f1 prior to

integration over P and Q. The four-momentum appearing
in the argument of f1 is naturally that of the bosonic
propagator in the graph.
The evaluation of the above integrals proceeds the same

fashion as before, i.e., by applying zero to two cuts in the
massive fermion lines. Dropping the � independent zero-
cut term, we obtain at the one-cut level

�m;1c
VM

V
¼ �4dA

g4

ð4�Þ2 �
2�

�
2m2

�
f0D4

m m 0

c 1 1þ �
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þ ~D4

m m 0
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 !�
� ð1� �Þ

�
�
f0D4

m m 0

c 1 �

 !
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m m 0

c 1 �

 !�

þ ð1� �Þ ~D5

0

1þ �

 !�
; (C2)

and for two cuts

�m;2c
VM

V
¼ �2dA

g4

ð4�Þ2 �
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�
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f0
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m m 0
c c �

� ���
: (C3)

To complete the evaluation of Eq. (32), we now finally plug
in the values of the various integrals from Appendix E,
arriving at
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Next, we look at the cross term �x
VM. Proceeding along

the same lines as with �m
VM, we write

�x
VM ¼ �x;1c

VM þ�x;2c
VM ; (C6)

in which the first function is seen to vanish, while the
second is given by

�x;2c
VM

V
¼ 2ð1� �ÞdA g4

ð4�Þ2 �
2�
XNl

i¼1

�D4
0 0 0
c c �

� �
: (C7)

Here, the bar indicates multiplication of the integrand of
D4 by the function f1ðm2=P2Þ � f1ð0Þ, and just as before,
the index cmeans that the line in question has been cut, the
only difference being that now m ¼ 0.

In the end, one finds

�x
VM

V
¼ 4dA

3

g4

ð4�Þ2
XNl

i¼1

Z d3p

ð2�Þ3
�ð�i � pÞÞ

2p

�
Z d3q
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2q
�ðaÞ; (C8)

where we have defined

a � ðP�QÞ2
m2

;

�ðaÞ ¼ 4

a
� lnaþ 2ða� 2Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffi
4þ a

a

s
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
a

4þ a

r �
:

(C9)

An analytic evaluation of two of the remaining three
integrals finally leads to the result displayed in Eq. (47).

APPENDIX D: INTEGRAL DEFINITIONS AND
RESULTS

In this Appendix, we give the definitions of all of the
integrals In that have appeared in our discussion so far, as
well as provide results for the ones needed in constructing
the result in Sec. III, i.e., the ones not included in the
functions Gnðm̂Þ. When available, the results will be in
the form of analytic expressions, while for the numerically
evaluated ones we provide approximating pocket formulas.

Starting from the integrals needed in various parts of the
2GI computation, we have
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where again a � ðP�QÞ2=m2 and �ðaÞ is as defined in
Eq. (C9). In these integrals, all four-momenta are massive
and taken to be on shell (P2 ¼ �m2), while� only appears
in the integration measures. When outside of the integral,
the mass derivative again acts only on the mass appearing
in the p integration measure (i.e., not on the ones in the q or
r integration measures or on the masses inside the inte-
grand), after which ~m is set equal to m.

Finally, the integrals introduced in Sec. III D are defined
by
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where Fl;h and Gl;h are defined in Appendix A, and we
have used the notation v̂ � 1� m̂.

APPENDIX E: 4D INTEGRALS

In this last Appendix, we complete our presentation by
providing results for the various vacuum (T ¼ � ¼ 0)
amplitudes that are needed as input in the single-,
double-, and triple-cut integrals. They are given as power
series expansions in � ¼ ð4� dÞ=2 up to the order re-
quired, using the integration measure defined in the first
section.

According to the notation introduced earlier, and using
the results from Refs. [44–47] we obtain
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In accordance with the notation of Refs. [44,45], we have
denoted here
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðPþQÞ2p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP�QÞ2p ; (E20)

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP�QÞ2p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðPþQÞ2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP�QÞ2p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðPþQÞ2p ¼ �x: (E21)

In simplifying the results, we have found the
MATHEMATICA package HYPEXP very useful [92].
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