455 research outputs found

    Evaluation of mitogen-induced responses in marine mammal and human lymphocytes by in-vitro exposure of butyltins and non-ortho-coplanar PCBs. Environ Pollut

    Get PDF
    Abstract The effects of exposure to butyltin compounds (BTs: tributyltin; TBT, dibutyltin; DBT and monobutyltin; MBT) and non-ortho coplanar PCBs (IUPAC 77, 126 and 169) on marine mammals and human lymphocyte were evaluated. Peripheral blood mononuclear cells (PBMCs) isolated from Dall's porpoises (Phocoenoides dalli), bottlenose dolphins (Tursiops truncatus), a California sealion (Zalophus californianus), a larga seal (Phoca largha) and humans (Homo sapiens) were exposed at varying concentrations of BTs and coplanar PCBs. Concanavalin A (Con A)-stimulated mitogenesis found significantly suppressed (P<0.01) when the cells were exposed at 300 nM (89 ng/ml) of TBT and 330 nM of DBT (77 ng/ml), while MBT showed little cytotoxicity at treatment levels of up to 3600 nM (620 ng/ml). BTs concentrations in the liver of Dall's porpoises from Japanese coastal waters ranged between 81-450 ng/g for TBT and 200-1100 ng/g (wet wt.) for DBTs, which is greater than the cytotoxic levels registered in this study. In contrast, non-ortho coplanar PCBs did not suppress cell proliferation at concentrations of up to 30 nM (10 ng/ml). The residue levels of coplanar PCBs in the blubber of Dall's porpoises were 0.12-1.3 ng/g, which were one order of lower than those levels that do cell proliferation. When cells were exposed to a mixture of TBT/DBTand coplanar PCBs, the proliferation was significantly reduced to 33 nM DBT plus 34 nM CB-77 and 33 nM DBT plus 28 nM CB-169 mixtures, respectively. The investigations relating the contaminant-induced immunosuppression in marine mammals have been focused on persistent organochlorines such as PCBs, pesticides and dioxin compounds. However, this study suggested the possibility of BTs could also pose a serious threat to the immune functions in free-ranging marine mammals and humans.

    Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury

    Get PDF
    BACKGROUND: In the present investigation, the effect of Curcuma longa (Cl) and Ocimum sanctum (Os) on myocardial apoptosis and cardiac function was studied in an ischemia and reperfusion (I-R) model of myocardial injury. METHODS: Wistar albino rats were divided into four groups and orally fed saline once daily (sham, control IR) or Cl (100 mg/kg; Cl-IR) or Os (75 mg/kg; Os-IR) respectively for 1 month. On the 31(st )day, in the rats of the control IR, Cl-IR and Os-IR groups LAD occlusion was undertaken for 45 min, and reperfusion was allowed for 1 h. The hemodynamic parameters{mean arterial pressure (MAP), heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak positive (+) LVdP/dt (rate of pressure development) and negative (-) LVdP/dt (rate of pressure decline)} were monitored at pre-set points throughout the experimental duration and subsequently, the animals were sacrificed for immunohistopathological (Bax, Bcl-2 protein expression & TUNEL positivity) and histopathological studies. RESULTS: Chronic treatment with Cl significantly reduced TUNEL positivity (p < 0.05), Bax protein (p < 0.001) and upregulated Bcl-2 (p < 0.001) expression in comparison to control IR group. In addition, Cl demonstrated mitigating effects on several myocardial injury induced hemodynamic {(+)LVdP/dt, (-) LVdP/dt & LVEDP} and histopathological perturbations. Chronic Os treatment resulted in modest modulation of the hemodynamic alterations (MAP, LVEDP) but failed to demonstrate any significant antiapoptotic effects and prevent the histopathological alterations as compared to control IR group. CONCLUSION: In the present study, significant cardioprotection and functional recovery demonstrated by Cl may be attributed to its anti-apoptotic property. In contrast to Os, Cl may attenuate cell death due to apoptosis and prevent the impairment of cardiac performance

    Differential regulation of diacylglycerol kinase isoform in human failing hearts

    Get PDF
    Evidence from several studies indicates the importance of Gαq protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG), and protein kinase C, in the development of heart failure. DAG kinase (DGK) acts as an endogenous regulator of GPCR signaling pathway by catalyzing and regulating DAG. Expressions of DGK isoforms α, ε, and ζ in rodent hearts have been detected; however, the expression and alteration of DGK isoforms in a failing human heart has not yet been examined. In this study, we detected mRNA expressions of DGK isoforms γ, η, ε, and ζ in failing human heart samples obtained from patients undergoing cardiovascular surgery with cardiopulmonary bypass. Furthermore, we investigated modulation of DGK isoform expression in these hearts. We found that expressions of DGKη and DGKζ were increased and decreased, respectively, whereas those of DGKγ and DGKε remained unchanged. This is the first report that describes the differential regulation of DGK isoforms in normal and failing human hearts

    Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity

    Get PDF
    Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of&nbsp;circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation&nbsp;reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression

    Essential Role of Neuron-Enriched Diacylglycerol Kinase (DGK), DGKβ in Neurite Spine Formation, Contributing to Cognitive Function

    Get PDF
    BACKGROUND: Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKbeta. In addition, overexpression of DGKbeta in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKbeta, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKbeta but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that membrane-localized DGKbeta regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory

    Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema

    Get PDF
    BACKGROUND: Apoptosis has recently been proposed to contribute to the pathogenesis of emphysema. METHODS: In order to establish if cell fate plays a role even in end-stage disease we studied 16 lungs (9 smoking-associated and 7 α1antitrypsin (AAT)-deficiency emphysema) from patients who had undergone lung transplantations. Six unused donor lungs served as controls. Apoptosis was evaluated by TUNEL analysis, single-stranded DNA laddering, electron microscopy and cell proliferation by an immunohistochemical method (MIB1). The role of the transforming growth factor (TGF)-β1 pathway was also investigated and correlated with epithelial cell turnover and with the severity of inflammatory cell infiltrate. RESULTS: The apoptotic index (AI) was significantly higher in emphysematous lungs compared to the control group (p ≤ 0.01), particularly if only lungs with AAT-deficiency emphysema were considered (p ≤ 0.01 vs p = 0.09). The proliferation index was similar in patients and controls (1.9 ± 2.2 vs 1.7 ± 1.1). An increased number of T lymphocytes was observed in AAT-deficiency lungs than smoking-related cases (p ≤ 0.05). TGF-β1 expression in the alveolar wall was higher in patients with smoking-associated emphysema than in cases with AAT-deficiency emphysema (p ≤ 0.05). A positive correlation between TGF-βRII and AI was observed only in the control group (p ≤ 0.005, r(2 )= 0.8). A negative correlation was found between the TGF-β pathway (particularly TGF-βRII) and T lymphocytes infiltrate in smoking-related cases (p ≤ 0.05, r(2 )= 0.99) CONCLUSION: Our findings suggest that apoptosis of alveolar epithelial cells plays an important role even in end-stage emphysema particularly in AAT-deficiency disease. The TGFβ-1 pathway does not seem to directly influence epithelial turnover in end-stage disease. Inflammatory cytokine different from TGF-β1 may differently orchestrate cell fate in AAT and smoking-related emphysema types

    Genetic and Physical Interactions between Tel2 and the Med15 Mediator Subunit in Saccharomyces cerevisiae

    Get PDF
    International audienceBACKGROUND: In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. PRINCIPAL FINDINGS: To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15 mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. SIGNIFICANCE: Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit

    Photopatterned antibodies for selective cell attachment

    Get PDF
    We present a phototriggerable system that allows for the spatiotemporal controlled attachment of selected cell types to a biomaterial using immobilized antibodies that specifically target individual cell phenotypes.o-Nitrobenzyl caged biotin was used to functionalize chitosan membranes and mediate site-specific coupling of streptavidin and biotinylated antibodies after light activation. The ability of this system to capture and immobilize specific cells on a surface was tested using endothelial-specific biotinylated antibodies and nonspecific ones as controls. Homogeneous patterned monolayers of human umbilical vein endothelial cells were obtained on CD31-functionalized surfaces. This is a simple and generic approach that is applicable to other ligands, materials, and cell types and shows the flexibility of caged ligands to trigger and control the interaction between cells and biomaterials.We thank Martina Knecht (MPIP) for help with the synthesis of caged biotin and Dr. Ron Unger and Prof. C. J. Kirkpatrick (University Clinic Mainz, RepairLab) for providing HUVECs. C.A.C. acknowledges funding support from the Portuguese Foundation for Science and Technology (FCT) (fellowship SFRH/BD/61390/2009) and from the International Max-Planck Research School in Mainz. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS
    corecore