62 research outputs found

    Loss of MIR15A and MIR16-1 at 13q14 is associated with increased TP53 mRNA, de-repression of BCL2 and adverse outcome in chronic lymphocytic leukaemia.

    Get PDF
    This study was conducted to investigate the possibility that TP53 mRNA is variably expressed in chronic lymphocytic leukaemia (CLL) and that under-expression is associated with TP53 dysfunction and adverse outcome. Although TP53 mRNA levels did indeed vary among the 104 CLL samples examined, this variability resulted primarily from over-expression of TP53 mRNA in 18 samples, all of which lacked TP53 deletion/mutation. These patients had higher lymphocyte counts and shorter overall and treatment-free survival times compared to cases with low TP53 mRNA expression and no TP53 deletion/mutation. Furthermore, TP53 mRNA levels did not correlate with levels of TP53 protein or its transcriptional target CDKN1A. We speculated that the adverse outcome associated with TP53 mRNA over-expression might reflect variation in levels of MIR15A and MIR16-1, which are encoded on chromosome 13q14 and target TP53 and some oncogenes including BCL2. In keeping with our hypothesis, 13q14 copy number and levels of MIR15A/MIR16-1 correlated positively with one another but negatively with levels of TP53 mRNA and BCL2 mRNA. Our findings support a model in which loss of MIR15A/MIR16-1 at chromosome 13q14 results in adverse outcome due to de-repression of oncogenes such as BCL2, and up-regulation of TP53 mRNA as a bystander effect

    Multiplexed profiling of RNA and protein expression signatures in individual cells using flow or mass cytometry

    Get PDF
    Advances in single-cell analysis technologies are providing novel insights into phenotypic and functional heterogeneity within seemingly identical cell populations. RNA within single cells can be analyzed using unbiased sequencing protocols or through more targeted approaches using in situ hybridization (ISH). The proximity ligation assay for RNA (PLAYR) approach is a sensitive and high-throughput technique that relies on in situ and proximal ligation to measure at least 27 specific RNAs by flow or mass cytometry. We provide detailed instructions for combining this technique with antibody-based detection of surface/internal protein, allowing simultaneous highly multiplexed profiling of RNA and protein expression at single-cell resolution. PLAYR overcomes limitations on multiplexing seen in previous branching DNA–based RNA detection techniques by integration of a transcript-specific oligonucleotide sequence within a rolling-circle amplification (RCA). This unique transcript-associated sequence can then be detected by heavy metal (for mass cytometry)- or fluorophore (for flow cytometry)-conjugated complementary detection oligonucleotides. Included in this protocol is methodology to label oligonucleotides with lanthanide metals for use in mass cytometry. When analyzed by mass cytometry, up to 40 variables (with scope for future expansion) can be measured simultaneously. We used the described protocol to demonstrate intraclonal heterogeneity within primary cells from chronic lymphocytic leukemia patients, but it can be adapted to other primary cells or cell lines in suspension. This robust, reliable and reproducible protocol can be completed in 2–3 d and can be paused at several stages for convenience

    LINT, a Novel dL(3)mbt-Containing Complex, Represses Malignant Brain Tumour Signature Genes

    Get PDF
    Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access

    Structural Studies of a Four-MBT Repeat Protein MBTD1

    Get PDF
    The Polycomb group (PcG) of proteins is a family of important developmental regulators. The respective members function as large protein complexes involved in establishment and maintenance of transcriptional repression of developmental control genes. MBTD1, Malignant Brain Tumor domain-containing protein 1, is one such PcG protein. MBTD1 contains four MBT repeats.We have determined the crystal structure of MBTD1 (residues 130-566aa covering the 4 MBT repeats) at 2.5 A resolution by X-ray crystallography. The crystal structure of MBTD1 reveals its similarity to another four-MBT-repeat protein L3MBTL2, which binds lower methylated lysine histones. Fluorescence polarization experiments confirmed that MBTD1 preferentially binds mono- and di-methyllysine histone peptides, like L3MBTL1 and L3MBTL2. All known MBT-peptide complex structures characterized to date do not exhibit strong histone peptide sequence selectivity, and use a "cavity insertion recognition mode" to recognize the methylated lysine with the deeply buried methyl-lysine forming extensive interactions with the protein while the peptide residues flanking methyl-lysine forming very few contacts [1]. Nevertheless, our mutagenesis data based on L3MBTL1 suggested that the histone peptides could not bind to MBT repeats in any orientation.The four MBT repeats in MBTD1 exhibits an asymmetric rhomboid architecture. Like other MBT repeat proteins characterized so far, MBTD1 binds mono- or dimethylated lysine histones through one of its four MBT repeats utilizing a semi-aromatic cage.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Kinobead Profiling Reveals Reprogramming of BCR Signaling in Response to Therapy within Primary CLL Cells

    Get PDF
    Purpose: B-cell receptor (BCR) signaling is critical for the pathogenesis of chronic lymphocytic leukemia (CLL), promoting both malignant cell survival and disease progression. Although vital, understanding of the wider signaling network associated with malignant BCR stimulation is poor. This is relevant with respect to potential changes in response to therapy, particularly involving kinase inhibitors. In the current study, we describe a novel high-resolution approach to investigate BCR signaling in primary CLL cells and track the influence of therapy on signaling response. Experimental Design: A kinobead/mass spectrometry–based protocol was used to study BCR signaling in primary CLL cells. Longitudinal analysis of samples donated by clinical trial patients was used to investigate the impact of chemoimmunotherapy and ibrutinib on signaling following surface IgM engagement. Complementary Nanostring and immunoblotting analysis was used to verify our findings. Results: Our protocol isolated a unique, patient-specific signature of over 30 kinases from BCR-stimulated CLL cells. This signature was associated with 13 distinct Kyoto Encyclopedia of Genes and Genomes pathways and showed significant change in cells from treatment-naïve patients compared with those from patients who had previously undergone therapy. This change was validated by longitudinal analysis of clinical trials samples where BCR-induced kinome responses in CLL cells altered between baseline and disease progression in patients failing chemoimmunotherapy and between baseline and treatment in patients taking ibrutinib. Conclusions: These data comprise the first comprehensive proteomic investigation of the BCR signaling response within CLL cells and reveal unique evidence that these cells undergo adaptive reprogramming of this signaling in response to therapy

    H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development

    Get PDF
    MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways

    HP1 Recruits Activity-Dependent Neuroprotective Protein to H3K9me3 Marked Pericentromeric Heterochromatin for Silencing of Major Satellite Repeats

    Get PDF
    H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom’s 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia
    corecore