1,263 research outputs found
Uniaxial pressure dependencies of the phase boundary of TlCuCl_3
We present a thermal expansion and magnetostriction study of TlCuCl_3, which
shows a magnetic-field induced transition from a spin gap phase to a Neel
ordered phase. Using Ehrenfest relations we derive huge and strongly
anisotropic uniaxial pressure dependencies of the respective phase boundary,
e.g. the transition field changes by about GPa depending on the
direction of uniaxial pressure.Comment: 2 pages, e figures; presented at SCES200
Magnetoelastic Coupling in the Spin-Dimer System TlCuCl
We present high-resolution measurements of the thermal expansion and the
magnetostriction of TlCuCl which shows field-induced antiferromagnetic
order. We find pronounced anomalies in the field and temperature dependence of
different directions of the lattice signaling a large magnetoelastic coupling.
The phase boundary is extremely sensitive to pressure, e.g. the transition
field would change by about +/- 185$%/GPa under uniaxial pressure applied along
certain directions. This drastic effect can unambiguously be traced back to
changes of the intradimer coupling under uniaxial pressure. The interdimer
couplings remain essentially unchanged under pressure, but strongly change when
Tl is replaced by K.Comment: 4 pages with 4 figures include
Die Auswandererberatungsstelle in Münster
Die Arbeit untersucht die Geschichte der Auswandererberatungsstelle in Münster von ihrer Gründung 1929 bis zu ihrer Schließung 1938. Einen besonderen Schwerpunkt legen die Autoren hierbei auf die Arbeitsweise der Beratungsstelle: Wer wurde hier beraten und wie und mit welchen Zielen liefen diese Beratungen ab? Nicht zuletzt fragt die Arbeit danach, ob jüdische Auswanderer von der Beratungsstelle als Sonderfälle behandelt wurden und wenn ja, ab wann
Utilizing Remote Multispectral Scanner Data and Computer Analysis Techniques
This research was designed to study the ability of present automatic computer analysis techniques with the use of multispectral scanner data to differentiate land use categories represented in a complex urban scene and in a selected flightline. An airborne multispectral scanner was used to collect the visible and reflective infrared data.
A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner.
The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.
A 1.6 km. wide and 16 km. long flightline located in Sullivan County, Indiana, which represented most major land use categories, was selected for analysis. Multispectral scanner data were collected on three flights from an altitude of 1,500 meters. Energy in twelve wavelength bands from 0.46 to 11.70 micrometers was recorded by the scanner.
A new, more objective approach to computer training was developed for analysis of the three dates of data. Emphasis was placed on the standardization of a procedure for analysis of data. The procedure offered faster and consistently good duplication of attained results.
The results indicated an ability for automatic computer analysis-of remotely sensed multispectral scanner data to characterize and map land use categories within the test area. Additionally, results indicated an alteration of the data analysis procedure and land use classification scheme
The role of play objects and object play in human cognitive evolution and innovation
Abstract: In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation’s material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life-history model of the costs and benefits of experimentation with a niche-construction perspective. Niche-construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens’ niche is the active provisioning of children with play objects — sometimes functional miniatures of adult tools — and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research
Non-Linear Effects in Non-Kerr spacetimes
There is a chance that the spacetime around massive compact objects which are
expected to be black holes is not described by the Kerr metric, but by a metric
which can be considered as a perturbation of the Kerr metric. These non-Kerr
spacetimes are also known as bumpy black hole spacetimes. We expect that, if
some kind of a bumpy black hole exists, the spacetime around it should possess
some features which will make the divergence from a Kerr spacetime detectable.
One of the differences is that these non-Kerr spacetimes do not posses all the
symmetries needed to make them integrable. We discuss how we can take advantage
of this fact by examining EMRIs into the Manko-Novikov spacetime.Comment: 8 pages, 3 Figures; to appear in the proceedings of the conference
"Relativity and Gravitation: 100 Years after Einstein in Prague" (2012
A System Performance Based Comparison of Sparse Regular and Irregular Antenna Arrays for Millimeter-Wave Multi-User MIMO Base Stations
A system-level study was conducted that evaluated the system performance of various dense and sparse antenna array configurations for application in millimeter-wave multi-user multiple-input multiple-output base stations. The performance was evaluated by investigating the probability that a user experiences an outage when a zero-forcing pre-coder is used in a random line of sight scenario. This paper shows that the outage probability significantly decreased when irregular sparse arrays were used rather than regular sparse or regular dense arrays. A re-configurable linear array was designed and realized as a demonstrator. It used 3D-printed aluminum box horn antenna elements that had wide scanning range in the azimuthal plane and a small scanning range in the elevation plane. For the demonstrator, it was shown that the outage probability was reduced from 3.85% to 0.64% by moving from a sparse regularly spaced array to a sparse randomly spaced array. This amounted to an improvement of a factor of six. The sparse topology allowed for the usage of large antenna elements that had an increased gain and still achieved wide-angle scanning, while reducing mutual coupling to a minimu
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
In recent years, the growing number of available climate models and future scenarios has led to emergent constraints becoming a popular tool to constrain uncertain future projections. However, when emergent constraints are applied over large areas, it is unclear (i) if the well-performing models simulate the correct dynamics within the considered area, (ii) which key dynamical features the emerging constraint is stemming from, and (iii) if the observational uncertainty is low enough to allow for a considerable reduction in the projection uncertainties.
We therefore propose to regionally optimize emergent relationships with the twofold goal to (a) identify key model dynamics associated with the emergent constraint and model inconsistencies around them and (b) provide key areas where a narrow observational uncertainty is crucial for constraining future projections.
Here, we consider two previously established emergent constraints of the future carbon uptake in the North Atlantic (Goris et al., 2018). For the regional optimization, we use a genetic algorithm and pre-define a suite of shapes and size ranges for the desired regions. Independent of pre-defined shape and size range, the genetic algorithm persistently identifies the Gulf Stream region centred around 30∘ N as optimal as well as the region associated with broad interior southward volume transport centred around 26∘ N. Close to and within our optimal regions, observational data of volume transport are available from the RAPID array with relative low observational uncertainty. Yet, our regionally optimized emergent constraints show that additional measures of specific biogeochemical variables along the array will fundamentally improve our estimates of the future carbon uptake in the North Atlantic. Moreover, our regionally optimized emergent constraints demonstrate that models that perform well for the upper-ocean volume transport and related key biogeochemical properties do not necessarily reproduce the interior-ocean volume transport well, leading to inconsistent gradients of key biogeochemical properties. This hampers the applicability of emergent constraints over large areas and highlights the need to additionally evaluate spatial model features.</p
- …