102 research outputs found

    Gene-rich germline-restricted chromosomes in black-winged fungus gnats evolved through hybridization

    Get PDF
    Germline-restricted DNA has evolved in diverse animal taxa and is found in several vertebrate clades, nematodes, and flies. In these lineages, either portions of chromosomes or entire chromosomes are eliminated from somatic cells early in development, restricting portions of the genome to the germline. Little is known about why germline-restricted DNA has evolved, especially in flies, in which 3 diverse families, Chironomidae, Cecidomyiidae, and Sciaridae, carry germline-restricted chromosomes (GRCs). We conducted a genomic analysis of GRCs in the fungus gnat Bradysia (Sciara) coprophila (Diptera: Sciaridae), which has 2 large germline-restricted “L” chromosomes. We sequenced and assembled the genome of B. coprophila and used differences in sequence coverage and k-mer frequency between somatic and germline tissues to identify GRC sequence and compare it to the other chromosomes in the genome. We found that the GRCs in B. coprophila are large, gene rich, and have many genes with divergent homologs on other chromosomes in the genome. We also found that 2 divergent GRCs exist in the population we sequenced. GRC genes are more similar in sequence to genes from another Dipteran family (Cecidomyiidae) than to homologous genes from Sciaridae. This unexpected finding suggests that these chromosomes likely arose in Sciaridae through hybridization with a related lineage. These results provide a foundation from which to answer many questions about the evolution of GRCs in Sciaridae, such as how this hybridization event resulted in GRCs and what features on these chromosomes cause them to be restricted to the germline

    On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ˜ 2.

    Get PDF
    This paper discusses the evolution of the correlation between galaxy star formation rates (SFRs) and stellar mass (M*) over the last ∼10 Gyr, particularly focusing on its environmental dependence. We first present the mid-infrared (MIR) properties of the Hα-selected galaxies in a rich cluster Cl 0939+4713 at z = 0.4. We use wide-field Spitzer/MIPS 24 μm data to show that the optically red Hα emitters, which are most prevalent in group-scale environments, tend to have higher SFRs and higher dust extinction than the majority population of blue Hα sources. With an MIR stacking analysis, we find that the median SFR of Hα emitters is higher in higher density environment at z = 0.4. We also find that star-forming galaxies in high-density environment tend to have higher specific SFR (SSFR), although the trend is much less significant compared to that of SFR. This increase of SSFR in high-density environment is not visible when we consider the SFR derived from Hα alone, suggesting that the dust attenuation in galaxies depends on environment; galaxies in high-density environment tend to be dustier (by up to ∼0.5 mag), probably reflecting a higher fraction of nucleated, dusty starbursts in higher density environments at z = 0.4. We then discuss the environmental dependence of the SFR–M* relation for star-forming galaxies since z ∼ 2, by compiling our comparable, narrow-band-selected, large Hα emitter samples in both distant cluster environments and field environments. We find that the SSFR of Hα-selected galaxies (at the fixed mass of log (M*/M⊙) = 10) rapidly evolves as (1 + z)3, but the SFR–M* relation is independent of the environment since z ∼ 2, as far as we rely on the Hα-based SFRs (with M*-dependent extinction correction). Even if we consider the possible environmental variation in the dust attenuation, we conclude that the difference in the SFR–M* relation between cluster and field star-forming galaxies is always small (≲0.2 dex level) at any time in the history of the Universe since z ∼ 2

    Genomic evidence of paternal genome elimination in the globular springtail Allacma fusca

    Get PDF
    Paternal genome elimination-a type of reproduction in which males inherit but fail to pass on their father's genome-evolved independently in 6-8 arthropod clades. Thousands of species, including several important for agriculture, reproduce via this mode of reproduction. While paternal genome elimination is well established in some of the clades, the evidence in globular springtails (Symphypleona) remains elusive, even though they represent the oldest and most species-rich clade putatively reproducing via paternal genome elimination. We sequenced genomic DNA from whole bodies of Allacma fusca males with high fractions (>27.5%) of sperm to conclusively confirm that all the sperm carry 1 parental haplotype only. Although it is suggestive that the single haplotype present in sperm is maternally inherited, definitive genetic proof of the parent of origin is still needed. The genomic approach we developed allows for the detection of genotypic differences between germline and soma in all species with sufficiently high fraction of germline in their bodies. This opens new opportunities for scans of reproductive modes in small organisms

    Transpulmonary thermodilution for hemodynamic measurements in severely burned children

    Get PDF
    Abstract Introduction Monitoring of hemodynamic and volumetric parameters after severe burns is of critical importance. Pulmonary artery catheters, however, have been associated with many risks. Our aim was to show the feasibility of continuous monitoring with minimally invasive transpulmonary thermodilution (TPTD) in severely burned pediatric patients. Methods This prospective cohort study was conducted in patients with severe burns over 40% of the total body surface area (TBSA) who were admitted to the hospital within 96 hours after sustaining the injury. TPTD measurements were performed using the PiCCO system (Pulsion Medical Systems, Munich, Germany). Cardiac Index (CI), Intrathoracic Blood Volume Index (ITBVI) (Stewart-Hamilton equation), Extravascular Lung Water Index (EVLWI) and Systemic Vascular Resistance Index (SVRI) measurements were recorded twice daily. Statistical analysis was performed using one-way repeated measures analysis of variance with the post hoc Bonferroni test for intra- and intergroup comparisons. Results Seventy-nine patients with a mean age (±SD) of 9 ± 5 years and a mean TBSA burn (±SD) of 64% ± 20% were studied. CI significantly increased compared to level at admission and was highest 3 weeks postburn. ITBVI increased significantly starting at 8 days postburn. SVRI continuously decreased early in the perioperative burn period. EVLWI increased significantly starting at 9 days postburn. Young children (0 to 5 years old) had a significantly increased EVLWI and decreased ITBVI compared to older children (12 to 18 years old). EVLWI was significantly higher in patients who did not survive burn injury. Conclusions Continuous PiCCO measurements were performed for the first time in a large cohort of severely burned pediatric patients. The results suggest that hyperdynamic circulation begins within the first week after burn injury and continues throughout the entire intensive care unit stay

    A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106

    Full text link
    On 2019/07/30.86853 UT, IceCube detected a high-energy astrophysical neutrino candidate. The Flat Spectrum Radio Quasar PKS 1502+106 is located within the 50 percent uncertainty region of the event. Our analysis of 15 GHz Very Long Baseline Array (VLBA) and astrometric 8 GHz VLBA data, in a time span prior and after the IceCube event, reveals evidence for a radio ring structure which develops with time. Several arc-structures evolve perpendicular to the jet ridge line. We find evidence for precession of a curved jet based on kinematic modelling and a periodicity analysis. An outflowing broad line region (BLR) based on the C IV line emission (Sloan Digital Sky Survey, SDSS) is found. We attribute the atypical ring to an interaction of the precessing jet with the outflowing material. We discuss our findings in the context of a spine-sheath scenario where the ring reveals the sheath and its interaction with the surroundings (narrow line region, NLR, clouds). We find that the radio emission is correlated with the γ\gamma-ray emission, with radio lagging the γ\gamma-rays. Based on the γ\gamma-ray variability timescale, we constrain the γ\gamma-ray emission zone to the BLR (30-200 rgr_{\rm g}) and within the jet launching region. We discuss that the outflowing BLR provides the external radiation field for γ\gamma-ray production via external Compton scattering. The neutrino is most likely produced by proton-proton interaction in the blazar zone (beyond the BLR), enabled by episodic encounters of the jet with dense clouds, i.e. some molecular cloud in the NLR.Comment: 35 pages, 33 figures, 3 tables; accepted by the MNRAS Main Journa

    First annotated draft genomes of nonmarine ostracods (Ostracoda, Crustacea) with different reproductive modes.

    Get PDF
    Ostracods are one of the oldest crustacean groups with an excellent fossil record and high importance for phylogenetic analyses but genome resources for this class are still lacking. We have successfully assembled and annotated the first reference genomes for three species of nonmarine ostracods; two with obligate sexual reproduction (Cyprideis torosa and Notodromas monacha) and the putative ancient asexual Darwinula stevensoni. This kind of genomic research has so far been impeded by the small size of most ostracods and the absence of genetic resources such as linkage maps or BAC libraries that were available for other crustaceans. For genome assembly, we used an Illumina-based sequencing technology, resulting in assemblies of similar sizes for the three species (335-382 Mb) and with scaffold numbers and their N50 (19-56 kb) in the same orders of magnitude. Gene annotations were guided by transcriptome data from each species. The three assemblies are relatively complete with BUSCO scores of 92-96. The number of predicted genes (13,771-17,776) is in the same range as Branchiopoda genomes but lower than in most malacostracan genomes. These three reference genomes from nonmarine ostracods provide the urgently needed basis to further develop ostracods as models for evolutionary and ecological research

    Dust-free quasars in the early Universe

    Full text link
    The most distant quasars known, at redshifts z=6, generally have properties indistinguishable from those of lower-redshift quasars in the rest-frame ultraviolet/optical and X-ray bands. This puzzling result suggests that these distant quasars are evolved objects even though the Universe was only seven per cent of its current age at these redshifts. Recently one z=6 quasar was shown not to have any detectable emission from hot dust, but it was unclear whether that indicated different hot-dust properties at high redshift or if it is simply an outlier. Here we report the discovery of a second quasar without hot-dust emission in a sample of 21 z=6 quasars. Such apparently hot-dust-free quasars have no counterparts at low redshift. Moreover, we demonstrate that the hot-dust abundance in the 21 quasars builds up in tandem with the growth of the central black hole, whereas at low redshift it is almost independent of the black hole mass. Thus z=6 quasars are indeed at an early evolutionary stage, with rapid mass accretion and dust formation. The two hot-dust-free quasars are likely to be first-generation quasars born in dust-free environments and are too young to have formed a detectable amount of hot dust around them.Comment: To be published in Nature on the 18 March 2010
    corecore