79 research outputs found

    A comparative survey of anxiety level in primary school children with working and unemployed mothers in north of Iran; 2013

    Get PDF
    Background: Anxiety is one of important disorders of mental health in children and adolescents which is influenced by various endogenous and environmental factors. The aim of this study was a comparative survey of anxiety level in primary school children with working and unemployed mothers in Gorgan in 2013. Materials and Methods: In this descriptive-analytical and cross-sectional study, 745 male and female primary school students in public and private schools in Gorgan were selected using a combination sampling (stratification and clustering). For data collection were used Spence Children's Anxiety Scale (SCAS) included 38 questions. The collecting data were analyzed using SPSS-21 statistical software and chi-square and t tests. P values of less than 0.05 were considered as the significance level. Results: The results showed that the average age of students were 9.4 ± 1.65 and in the 38.4% of them were males and 61/6% were female 61/9% of the students had working mothers and 38.1% of their mothers were unemployed. Spence Children's Anxiety Scale total score for the studied sample was 22.74 ± 12.72. A significant difference was observed between two groups of the students with working and unemployed mothers and between two sexes (P<0.05). The separation anxiety and fear of physical harm was the most common disorders and the fear of open spaces also had the lowest prevalence. The prevalence of anxiety disorders in children with unemployed mothers with lower education levels, in female, in families with fewer children and public school students was more. Conclusion: This study showed that the prevalence of anxiety disorders in students whose mothers are unemployed and among the girls was more. Therefore, it's necessary to pay more attention to the mental health of the mothers and students with considering of their important role in family and society. © 2015 Derakhshanpoor F, et al

    The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds

    Get PDF
    Two active mutations (A 781 G and A 1575 G) in growth hormone (GH) gene, and their associations with litter size (LS), were investigated in both a high prolificacy (Matou, n = 182) and a low prolificacy breed (Boer, n = 352) by using the PCR-RFLP method. Superovulation experiments were designed in 57 dams, in order to evaluate the effect of different genotypes of the GH gene on superovulation response. Two genotypes (AA and AB, CC and CD) in each mutation were detected in these two goat breeds. Neither BB nor DD homozygous genotypes were observed. The genotypic frequencies of AB and CC were significantly higher than those of AA and CD. In the third parity, Matou dams with AB or CC genotypes had significantly larger litter sizes than those with AA and CD (p < 0.05). On combining the two loci, both Matou and Boer dams with ABCD genotype had the largest litter sizes when compared to the other genotypes (p < 0.05). When undergoing like superovulation treatments, a significantly higher number of corpora lutea and ova, with a lower incidence of ovarian cysts, were harvested in the AB and CC genotypes than in AA and CD. These results show that the two loci of GH gene are highly associated with abundant prolificacy and superovulation response in goat breeds

    Spermatogonial Stem Cells (SSCs) in Buffalo (Bubalus bubalis) Testis

    Get PDF
    BACKGROUND: Water buffalo is an economically important livestock species and about half of its total world population exists in India. Development of stem cell technology in buffalo can find application in targeted genetic modification of this species. Testis has emerged as a source of pluripotent stem cells in mice and human; however, not much information is available in buffalo. OBJECTIVES AND METHODS: Pou5f1 (Oct 3/4) is a transcription factor expressed by pluripotent stem cells. Therefore, in the present study, expression of POU5F1 transcript and protein was examined in testes of both young and adult buffaloes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Further, using the testis transplantation assay, a functional assay for spermatogonial stem cells (SSCs), stem cell potential of gonocytes/spermatogonia isolated from prepubertal buffalo testis was also determined. RESULTS: Expression of POU5F1 transcript and protein was detected in prepubertal and adult buffalo testes. Western blot analysis revealed that the POU5F1 protein in the buffalo testis exists in two isoforms; large (∼47 kDa) and small (∼21 kDa). Immunohistochemical analysis revealed that POU5F1 expression in prepubertal buffalo testis was present in gonocytes/spermatogonia and absent from somatic cells. In the adult testis, POU5F1 expression was present primarily in post-meiotic germ cells such as round spermatids, weakly in spermatogonia and spermatocytes, and absent from elongated spermatids. POU5F1 protein expression was seen both in cytoplasm and nuclei of the stained germ cells. Stem cell potential of prepubertal buffalo gonocytes/spermatogonia was confirmed by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. CONCLUSION/SIGNIFICANCE: These findings strongly indicate that gonocytes/spermatogonia, isolated for prepubertal buffalo testis can be a potential target for establishing a germ stem cell line that would enable genetic modification of buffaloes

    A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis.

    Get PDF
    BACKGROUND: Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. RESULTS: Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. CONCLUSION: The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells

    Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns

    Get PDF
    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic

    A Distinct Expression Pattern in Mammalian Testes Indicates a Conserved Role for NANOG in Spermatogenesis

    Get PDF
    BACKGROUND: NANOG is a key player in pluripotency and its expression is restricted to pluripotent cells of the inner cell mass, the epiblast and to primordial germ cells. Spermatogenesis is closely associated with pluripotency, because through this process highly specialized sperm cells are produced that contribute to the formation of totipotent zygotes. Nevertheless, it is unknown if NANOG plays a role in this process. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, NANOG expression was examined in testes of various mammals, including mouse and human. Nanog mRNA and NANOG protein were detected by RT-PCR, immunohistochemistry, and western blotting. Furthermore, eGFP expression was detected in the testis of a transgenic Nanog eGFP-reporter mouse. Surprisingly, although NANOG expression has previously been associated with undifferentiated cells with stem cell potential, expression in the testis was observed in pachytene spermatocytes and in the first steps of haploid germ cell maturation (spermiogenesis). Weak expression in type A spermatogonia was also observed. CONCLUSIONS: The findings of the current study strongly suggest a conserved role for NANOG in meiotic and post-meiotic stages of male germ cell developmen

    Biological versus chronological ovarian age:implications for assisted reproductive technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women have been able to delay childbearing since effective contraception became available in the 1960s. However, fertility decreases with increasing maternal age. A slow but steady decrease in fertility is observed in women aged between 30 and 35 years, which is followed by an accelerated decline among women aged over 35 years. A combination of delayed childbearing and reduced fecundity with increasing age has resulted in an increased number and proportion of women of greater than or equal to 35 years of age seeking assisted reproductive technology (ART) treatment.</p> <p>Methods</p> <p>Literature searches supplemented with the authors' knowledge.</p> <p>Results</p> <p>Despite major advances in medical technology, there is currently no ART treatment strategy that can fully compensate for the natural decline in fertility with increasing female age. Although chronological age is the most important predictor of ovarian response to follicle-stimulating hormone, the rate of reproductive ageing and ovarian sensitivity to gonadotrophins varies considerably among individuals. Both environmental and genetic factors contribute to depletion of the ovarian oocyte pool and reduction in oocyte quality. Thus, biological and chronological ovarian age are not always equivalent. Furthermore, biological age is more important than chronological age in predicting the outcome of ART. As older patients present increasingly for ART treatment, it will become more important to critically assess prognosis, counsel appropriately and optimize treatment strategies. Several genetic markers and biomarkers (such as anti-Müllerian hormone and the antral follicle count) are emerging that can identify women with accelerated biological ovarian ageing. Potential strategies for improving ovarian response include the use of luteinizing hormone (LH) and growth hormone (GH). When endogenous LH levels are heavily suppressed by gonadotrophin-releasing hormone analogues, LH supplementation may help to optimize treatment outcomes for women with biologically older ovaries. Exogenous GH may improve oocyte development and counteract the age-related decline of oocyte quality. The effects of GH may be mediated by insulin-like growth factor-I, which works synergistically with follicle-stimulating hormone on granulosa and theca cells.</p> <p>Conclusion</p> <p>Patients with biologically older ovaries may benefit from a tailored approach based on individual patient characteristics. Among the most promising adjuvant therapies for improving ART outcomes in women of advanced reproductive age are the administration of exogenous LH or GH.</p

    Numerical simulation of single-sided natural ventilation: ‎Impacts of balconies opening and depth scale on indoor ‎environment ‎

    Get PDF
    Heating Ventilation and Air Conditioning (HVAC), including, Mechanical ventilation (MV) in the building sector accounts for around 40% of electricity consumption and a large percentage of Greenhouse Gas (GHG) emissions. Natural ventilation (NV), as an alternative method, assist in decreasing energy consumption as well as harmful emissions. Balconies, a common architectural element in high rise residential buildings, could enhance NV and reduce reliance on mechanical ventilation in cooling dominant climates. Indoor air velocity (IAV) and distribution due to NV is less predictable than MV, and the impacts of balcony geometry on IAV and distribution profile have not yet been classified. This study, focusing on single-sided ventilation apartments, seeks to determine to what extent balcony depth and door opening area impacts on the indoor environment of the attached living area. For this, 3D – steady-state Computational Fluid Dynamics (CFD) simulations were conducted using ANSYS Fluent. The simulation results were validated against measured data in a full-scale experimental study in a residential building in subtropical Brisbane, Australia. Five different openings and nine depth scenarios were modelled, with results showing variances in indoor mean air velocity and temperature. The outcomes suggest that further research on the indoor distribution of temperature and air velocity may provide further clarity on the impact of balcony geometry on occupant comfort through NV
    corecore