386 research outputs found

    Structural Basis of the Association of HIV-1 Matrix Protein with DNA

    Get PDF
    HIV-1 matrix (MA) is a multifunctional protein that is synthesized as a polyprotein that is cleaved by protease during viral maturation. MA contains a cluster of basic residues whose role is controversial. Proposed functions include membrane anchoring, facilitating viral assembly, and directing nuclear import of the viral DNA. Since MA has been reported to be a component of the preintegration complex (PIC), we have used NMR to probe its interaction with other PIC components. We show that MA interacts with DNA and this is likely sufficient to account for its association with the PIC

    Electronic and Structural Properties of a 4d-Perovskite: Cubic Phase of SrZrO3_3

    Get PDF
    First-principles density functional calculations are performed within the local density approximation to study the electronic properties of SrZrO3_3, an insulating 4d-perovskite, in its high-temperature cubic phase, above 1400 K, as well as the generic 3d-perovskite SrTiO3_3, which is also a d^0-insulator and cubic above 105 K, for comparison reasons. The energy bands, density of states and charge density distributions are obtained and a detailed comparison between their band structures is presented. The results are discussed also in terms of the existing data in the literature for both oxides.Comment: 5 pages, 2 figure

    Novel Eddy Current Testing Sensor for the Inspection of Printed Circuit Boards

    Get PDF
    This paper presents a novel eddy-current testing (ECT) sensor for the inspection of printed circuit board (PCB), which detects trace damages on PCB conductors. The sensor is composed of a meander-exciting coil and three solenoid pick-up coils. Application of three pick-up coils increases the speed of the inspection process. Information about defects can be extracted either from an amplitude or a phase of a signal obtained during the inspection. A visualization process was provided using the amplitude data. In this paper the structure of the ECT sensor and principles of detection as well as experimental results are presented

    Superposition of Signal Components During Inspection of Printed Circuit Boards by an Eddy Current Testing Probe with a Solenoid Pick-up Coil

    Get PDF
    This paper presents a theory of the superposition of two signal components formed during the inspection of printed circuit board (PCB) by an eddy-current testing probe composed of a meander-exciting coil and a solenoid pick-up coil. Proportion of these two components effects the amplitude and the phase of the output signal. Characteristic changes of the phase characteristic, obtained from calculations and observed during the real inspection of PCB, are explained

    Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy

    Get PDF
    Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) spectroscopy has allowed to directly visualize such transient intermediates in a number of protein-protein and protein-DNA complexes. Here we present an analysis of the recently published PRE NMR data for a protein complex of yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP). First, we describe a simple, general method to map out the spatial and temporal distributions of binding geometries constituting the Cc-CcP encounter state. We show that the spatiotemporal mapping provides a reliable estimate of the experimental coverage and, at higher coverage levels, allows to delineate the conformational space sampled by the minor species. To further refine the encounter state, we performed PRE-based ensemble simulations. The generated solutions reproduce well the experimental data and lie within the allowed regions of the encounter maps, confirming the validity of the mapping approach. The refined encounter ensembles are distributed predominantly in a region encompassing the dominant form of the complex, providing experimental proof for the results of classical theoretical simulations

    Cooling quasiparticles in A(3)C(60) fullerides by excitonic mid-infrared absorption

    Get PDF
    Long after its discovery, superconductivity in alkali fullerides A(3)C(60) still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared excitation. Signatures attributable to a transient superconducting state extending up to temperatures ten times higher than the equilibrium T-c similar to 20 K have been discovered in K3C60 after ultra-short pulsed infrared irradiation-an effect which still appears as remarkable as mysterious. Motivated by the observation that the phenomenon is observed in a broad pumping frequency range that coincides with the mid-infrared electronic absorption peak still of unclear origin, rather than to transverse optical phonons as has been proposed, we advance here a radically new mechanism. First, we argue that this broad absorption peak represents a 'super-exciton' involving the promotion of one electron from the t(1u) half-filled state to a higher-energy empty t(1g) state, dramatically lowered in energy by the large dipole-dipole interaction acting in conjunction with the Jahn-Teller effect within the enormously degenerate manifold of (t(1u))(2)(t(1g))(1) states. Both long-lived and entropy-rich because they are triplets, the infrared-induced excitons act as a sort of cooling mechanism that permits transient superconductive signals to persist up to much higher temperatures

    Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Full text link
    [EN] Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 degrees C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H-2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.This work was supported by the Research Council of Norway (grant 256264) and the Spanish Government (SEV-2016-0683 grant).Malerød-Fjeld, H.; Clark, D.; Yuste Tirados, I.; Zanón González, R.; Catalán-Martínez, D.; Beeaff, D.; Hernández Morejudo, S.... (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy. 2(12):923-931. https://doi.org/10.1038/s41560-017-0029-4S923931212Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).Rostrup-Nielsen, J. R. Catalysis and large-scale conversion of natural gas. Catal. Today 21, 257–267 (1994).Voss, C. Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005).Gallucci, F., Fernandez, E., Corengia, P. & van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013).Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P. & Dittmeyer, R. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration. Int. J. Hydrogen Energy 39, 18058–18068 (2014).Al-Mufachi, N. A., Rees, N. V. & Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustainable Energy Rev. 47, 540–551 (2015).Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015).Myung, J.-h, Neagu, D., Miller, D. N. & Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016).Iwahara, H., Uchida, H., Ono, K. & Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988).Hamakawa, S., Hibino, T. & Iwahara, H. Electrochemical methane coupling using proton conductors. J. Electrochem. Soc. 140, 459–462 (1993).Bonanos, N., Knight, K. S. & Ellis, B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ion. 79, 161–170 (1995).Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 125, 1–11 (1999).Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ion. 97, 1–15 (1997).Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).Tao, S. W. & Irvine, J. T. S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 11581-1584 (2006).Wang, H., Peng, R., Wu, X., Hu, J. & Xia, C. Sintering behavior and conductivity study of yttrium-doped BaCeO3–BaZrO3 solid solutions using ZnO additives. J. Am. Ceram. Soc. 92, 2623–2629 (2009).Coors, W. G. in Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications (Ed. Sikalidis, C.) Ch. 22, 501–520 (InTech, UK, 2011) (2011).Manabe, R. et al. Surface protonics promotes catalysis. Sci. Rep. 6, 38007, (2016).Rohland, B., Eberle, K., Ströbel, R., Scholta, J. & Garche, J. Electrochemical hydrogen compressor. Electrochimica Acta 43, 3841–3846 (1998).Kochetova, N., Animitsa, I., Medvedev, D., Demin, A. & Tsiakaras, P. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv. 6, 73222–73268 (2016).Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 12, 647–651 (2013).Kjølseth, C. et al. Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ . Solid State Ion. 181, 268–275 (2010).Coors, W. G A stoichiometric titration method for measuring galvanic hydrogen flux in ceramic hydrogen separation membranes. J. Membr. Sci. 458, 245–253 (2014).Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. & De Filippis, P. Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Appl. Catal. A 387, 147–154 (2010).Wang, B., Zhu, J. & Lin, Z. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics. Appl. Energy 176, 1–11 (2016).Overview of Electricity Production and Use in Europe (European Environment Agency, 2016).Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre, 2014).Cho, V. H., Hamilton, B. A. & Kuehn, N. J. Assessment of Hydrogen Production with CO 2 Capture Volume 1: Baseline State-of-the-Art Plants (National Energy Technology Laboratory, 2010).Schjølberg, I. et al. Small-Scale Reformers for On-Site Hydrogen Supply (International Energy Agency-Hydrogen Implementing Agreement, 2012).de Visser, E. et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Control 2, 478–484 (2008).Bertucciolo, L. et al. Development of Water Electrolysis in the European Union (Fuel Cells and Hydrogen Joint Undertaking, 2014).Edwards, R. et al. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Wheels Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre 2014).Huss, A., Maas, H. & Hass, H. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Tank-to-Wheels Report Version 4.0, JEC Technical Reports (Joint Research Centre, 2013)

    Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR

    Get PDF
    Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation

    High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment

    Get PDF
    Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 Å from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions
    corecore