763 research outputs found

    Accurate measurement of a 96% input coupling into a cavity using polarization tomography

    Full text link
    Pillar microcavities are excellent light-matter interfaces providing an electromagnetic confinement in small mode volumes with high quality factors. They also allow the efficient injection and extraction of photons, into and from the cavity, with potentially near-unity input and output-coupling efficiencies. Optimizing the input and output coupling is essential, in particular, in the development of solid-state quantum networks where artificial atoms are manipulated with single incoming photons. Here we propose a technique to accurately measure input and output coupling efficiencies using polarization tomography of the light reflected by the cavity. We use the residual birefringence of pillar microcavities to distinguish the light coupled to the cavity from the uncoupled light: the former participates to rotating the polarization of the reflected beam, while the latter decreases the polarization purity. Applying this technique to a micropillar cavity, we measure a 53±2%53 \pm2 \% output coupling and a 96±1%96 \pm 1\% input coupling with unprecedented precision.Comment: 6 pages, 3 figure

    Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

    Full text link
    A systematic study of low energy nuclear structure at normal deformation is carried out using the Hartree-Fock-Bogoliubov theory extended by the Generator Coordinate Method and mapped onto a 5-dimensional collective quadrupole Hamiltonian. Results obtained with the Gogny D1S interaction are presented from dripline to dripline for even-even nuclei with proton numbers Z=10 to Z=110 and neutron numbers N less than 200. The properties calculated for the ground states are their charge radii, 2-particle separation energies, correlation energies, and the intrinsic quadrupole shape parameters. For the excited spectroscopy, the observables calculated are the excitation energies and quadrupole as well as monopole transition matrix elements. We examine in this work the yrast levels up to J=6, the lowest excited 0^+ states, and the two next yrare 2^+ states. The theory is applicable to more than 90% of the nuclei which have tabulated measurements. The data set of the calculated properties of 1712 even-even nuclei, including spectroscopic properties for 1693 of them, are provided in CEA website and EPAPS repository with this article \cite{epaps}.Comment: 51 pages with 26 Figures and 4 internal tables; this version is accepted by Physical Review

    Évaluation de l'applicabilité d'une méthode statistique aux variations saisonnières des relations concentration-débit sur un petit cours d'eau

    Get PDF
    Les paramètres chimiques jouent un rôle important dans l'équilibre des écosystèmes aquatiques. De nombreuses études ont déjà démontré que les caractéristiques chimiques d'un cours d'eau peuvent changer avec les saisons. Cette étude a pour but de revoir les relations débit- concentration sur un petit cours d'eau, dans le contexte des variations entre deux périodes climatiques. Pour ce faire, une analyse de régression entre le débit et six paramètres de qualité de d'eau (sodium, magnésium, conductivité, pH, azote total et le carbone organique dissous) provenant d'un petit bassin versant forestier (ruisseau Catamaran, N.-B., Canada) a été réalisée afin de déterminer la différence entre la saison sans glace et la saison avec glace. Des échantillons mensuels d'eau ont été récoltés sur le ruisseau Catamaran depuis 1990. Les analyses chimiques faites sur ses échantillons ont permis de déterminer les concentrations des paramètre étudiés. La plupart des variables de qualité ont démontré une relation significative avec le débit, sauf l'azote total. Les coefficients de détermination variaient entre 0.752 et 0.898, exception faite du carbone organique dissous dont le r2 était de 0.294. La conductivité était le paramètre dont le débit expliquait le plus la variance. Une étude des rapports des sommes des carrés des résidus a permis de déterminer que seul le pH requiert un modèle différent pour la période sans glace et la saison avec glace. Les variations saisonnières de la relation débit-pH revêt une importance significative pour les ruisseaux comme celui de Catamaran, qui incluent de nombreux habitats pour le saumon de l'Atlantique. Les résultats des analyses de régressions indiquent que lorsque la géochimie est plus complexe, comme c'est le cas pour le pH, il faut diviser les séries temporelles en sous-composantes saisonnières avant de tenter d'établir une relation débit-concentration.The chemical composition of water is of great importance to ecosystem functioning and in habitat management. Many studies have already shown that the chemical characteristics of a stream change with seasons. These variations have a strong impact on the ecosystem, especially on fish populations. The objective of this study is to quantify the relationship between the logarithm of discharge and six water quality parameters (sodium, magnesium, conductivity, pH, dissolved organic carbon and total nitrogen) for a small forested catchment (Catamaran Brook, N.B., Canada) and to verify the importance of seasonality. Monthly water samples have been gathered at Catamaran Brook since 1990. Detailed water chemistry performed on these samples provided a data base for this project. Various linear regression models were tested to verify if regressions were required for the winter season. The criterion used was the ratio of the squared sum of residuals for each data set, which follows a Fisher distribution. Of the six water quality parameters, all except total nitrogen showed a significant relationship with discharge. On an annual basis, the coefficient of determination (r2) varied between 0.752 and 0.898, except for dissolved organic carbon which showed a r2 of 0.294. Of the studied parameters, conductivity was the parameter for which discharge explained the most variance. Ratios of the squared sum of residuals were analyzed to verify the need for different regression models for the ice-covered and ice-free seasons. Only streamwater pH required 2 different models. This is of specific importance and interest because of an important salmon population in Catamaran Brook. Other researchers have shown that salmonids can be negatively impacted by pH depressions during snowmelt events.These results show that most dissolved ions which follow simple geochemical reactions can be modelled year-round with only one linear regression. When the geochemistry is more complex, such as in the case of pH, linear regression models can sometimes be used, provided that the annual time-series is divided into seasons with relatively homogenous hydrological and geochemical functions

    McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments

    Get PDF
    We developed the McGill Wetland Model (MWM) based on the general structure of the Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: (1) the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; (2) the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and (3) the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP), gross primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP = 0.80, GPP = 0.97, ER = 0.97; systematic RMSE [g C m<sup>−2</sup> d<sup>−1</sup>]: NEP = 0.12, GPP = 0.07, ER = 0.14; unsystematic RMSE: NEP = 0.15, GPP = 0.27, ER = 0.23). Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even a modest temperature increase could lead to converting the bog from a sink to a source of CO<sub>2</sub>. General weaknesses and further developments of MWM are discussed

    Positions and sizes of X-ray solar flare sources

    Get PDF
    <p><b>Aims:</b> The positions and source sizes of X-ray sources taking into account Compton backscattering (albedo) are investigated.</p> <p><b>Methods:</b> Using a Monte Carlo simulation of X-ray photon transport including photo-electric absorption and Compton scattering, we calculate the apparent source sizes and positions of X-ray sources at the solar disk for various source sizes, spectral indices and directivities of the primary source.</p> <p><b>Results:</b> We show that the albedo effect can alter the true source positions and substantially increase the measured source sizes. The source positions are shifted by up to ~0.5” radially towards the disk centre and 5 arcsec source sizes can be two times larger even for an isotropic source (minimum albedo effect) at 1 Mm above the photosphere. The X-ray sources therefore should have minimum observed sizes, and thus their FWHM source size (2.35 times second-moment) will be as large as ~7” in the 20-50 keV range for a disk-centered point source at a height of 1 Mm (~1.4”) above the photosphere. The source size and position change is greater for flatter primary X-ray spectra, a stronger downward anisotropy, for sources closer to the solar disk centre, and between the energies of 30 and 50 keV.</p> <p><b>Conclusions:</b> Albedo should be taken into account when X-ray footpoint positions, footpoint motions or source sizes from e.g. RHESSI or Yohkoh data are interpreted, and we suggest that footpoint sources should be larger in X-rays than in either optical or EUV ranges.</p&gt

    Divestment prevails over the green paradox when anticipating strong future climate policies

    Get PDF
    Fossil fuel market dynamics will have a significant impact on the effectiveness of climate policies1. Both fossil fuel owners and investors in fossil fuel infrastructure are sensitive to climate policies that threaten their natural resource endowments and production capacities2,3,4, which will consequently affect their near-term behaviour. Although weak in near-term policy commitments5,6, the Paris Agreement on climate7 signalled strong ambitions in climate change stabilization. Many studies emphasize that the 2 °C target can still be achieved even if strong climate policies are delayed until 20308,9,10. However, sudden implementation will have severe consequences for fossil fuel markets and beyond and these studies ignore the anticipation effects of owners and investors. Here we use two energy–economy models to study the collective influence of the two central but opposing anticipation arguments, the green paradox11 and the divestment effect12, which have, to date, been discussed only separately. For a wide range of future climate policies, we find that anticipation effects, on balance, reduce CO2 emissions during the implementation lag. This is because of strong divestment in coal power plants starting ten years ahead of policy implementation. The green paradox effect is identified, but is small under reasonable assumptions

    McGill Wetland Model: evaluation of a peatland carbon simulator developed for global assessments

    No full text
    International audienceWe developed the McGill Wetland Model (MWM) based on the general structure of the Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: 1. the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; 2. the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and 3. the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP), gross primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP=0.80, GPP=0.97, ER=0.97; systematic RMSE [g C m?2 d?1]: NEP=0.12, GPP=0.07, ER=0.14; unsystematic RMSE [g C m?2 d?1]: NEP=0.15, GPP=0.27, ER=0.23). Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even modest temperature increases could lead to converting the bog from a sink to a source of CO2. General weaknesses and further developments of MWM are discussed

    Detecting bubbles in exotic nuclei

    Full text link
    The occurrence of a bubble, due to an inversion of s1/2_{1/2} state with the state usually located above, is investigated. Proton bubbles in neutron-rich Argon isotopes are optimal candidates. Pairing effects which can play against the bubble formation are evaluated. They cannot prevent bubble formation in very neutron-rich argon isotopes such as 68^{68}Ar. This pleads for a measurement of the charge density of neutron-rich argon isotopes in the forthcoming years, with the advent of electron scattering experiments in next generation exotic beam facilities such as FAIR or RIBF.Comment: 6 pages, 5 figures, to be published in Nucl. Phys.
    corecore