109 research outputs found

    The Dispanins: A Novel Gene Family of Ancient Origin That Contains 14 Human Members

    Get PDF
    The Interferon induced transmembrane proteins (IFITM) are a family of transmembrane proteins that is known to inhibit cell invasion of viruses such as HIV-1 and influenza. We show that the IFITM genes are a subfamily in a larger family of transmembrane (TM) proteins that we call Dispanins, which refers to a common 2TM structure. We mined the Dispanins in 36 eukaryotic species, covering all major eukaryotic groups, and investigated their evolutionary history using Bayesian and maximum likelihood approaches to infer a phylogenetic tree. We identified ten human genes that together with the known IFITM genes form the Dispanin family. We show that the Dispanins first emerged in eukaryotes in a common ancestor of choanoflagellates and metazoa, and that the family later expanded in vertebrates where it forms four subfamilies (A–D). Interestingly, we also find that the family is found in several different phyla of bacteria and propose that it was horizontally transferred to eukaryotes from bacteria in the common ancestor of choanoflagellates and metazoa. The bacterial and eukaryotic sequences have a considerably conserved protein structure. In conclusion, we introduce a novel family, the Dispanins, together with a nomenclature based on the evolutionary origin

    Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions

    Get PDF
    Foraminiferal assemblages from the neritic environment reveal the palaeoecological impact of nutrient types in relation to shore distance and sedimentary setting. Comparatively proximal siliciclastic settings from the Boreal Domain (Brora section, Eastern Scotland) were dominated by inner−shelf primary production in the water column or in sea bottom, while in relatively seawards mixed carbonate−siliciclastic settings from the Western Tethys (Prebetic, Southern Spain), nutrients mainly derived from the inner−shelf source. In both settings, benthic foraminiferal assemblages increased in diversity and proportion of epifauna from eutrophic to oligotrophic conditions. The proximal setting example (Brora Brick Clay Mb.) corresponds to Callovian offshore shelf deposits with a high primary productivity, bottom accumulation of organic matter, and a reduced sedimentation rate for siliciclastics. Eutrophic conditions favoured some infaunal foraminifera. Lately, inner shelf to shoreface transition areas (Fascally Siltstone Mb.), show higher sedimentation rates and turbidity, reducing euphotic−zone range depths and primary production, and then deposits with a lower organic matter content (high−mesotrophic conditions). This determined less agglutinated infaunal foraminifera content and increasing calcitic and aragonitic epifauna, and calcitic opportunists (i.e., Lenticulina). The comparatively distal setting of the Oxfordian example (Prebetic) corresponds to: (i) outer−shelf areas with lower nutrient input (relative oligotrophy) and organic matter accumulation on comparatively firmer substrates (lumpy lithofacies group) showing dominance of calcitic epifaunal foraminifera, and (ii) mid−shelf areas with a higher sedimentation rate and nutrient influx (low−mesotrophic conditions) favouring potentially deep infaunal foraminifers in comparatively unconsolidated and nutrient−rich substrates controlled by instable redox boundary (marl−limestone rhythmite lithofacies).This research was carried out with the financial support of projects CGL2005−06636−C0201 and CGL2005−01316/BTE, and University of Oslo, Norway−Statoil cooperation. M.R. holds a Juan de la Cierva grant from the Ministry of Science and Technology of Spain

    IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry

    Get PDF
    To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats

    CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies

    No full text
    Nobutaka Hanagata1,2 1Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, 2Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan Abstract: Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide–CpG ODN conjugates, and nanomaterial–CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide–CpG ODN conjugates and nanomaterial–CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide–CpG ODN conjugates, and nanomaterial–CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies. Keywords: CpG oligodeoxynucleotides, Toll-like receptor 9, immunostimulation, nanomedicine, adjuvan

    Molecular interaction of silicon quantum dot micelles with plasma proteins: Hemoglobin and thrombin

    No full text
    Protein conformational changes are associated with potential cytotoxicity upon interaction with small molecules or nanomaterials. Protein misfolding leads to protein-mediated diseases; thus, it is important to study the conformational changes in proteins using nanoparticles as drug carriers. In this study, the conformational changes in hemoglobin and thrombin were observed using fluorescence spectroscopy, circular dichroism spectroscopy and molecular modelling studies after interaction with non-toxic, water-soluble near-infrared silicon quantum dot micelles. The molecular docking results indicated that the binding affinities of hemoglobin and thrombin with Si QD micelles are good. In addition, molecular dynamics simulations were performed to obtain more detailed information. © 2019 The Royal Society of Chemistry
    corecore