4,413 research outputs found
Development of an improved toughness hyperpure silica reflective heat shield
High purity three dimensionally woven silica-silica materials were evaluated for use as a tough reflective heat shield for planetary entry probes. A special weave design was selected to minimize light piping effects through the heat shield thickness. Various weave spacings were evaluated for densification efficiency with an 0.7 micron particle size high purity silica. Spectral hemispherical reflectance was measured from 0.2 to 2.5 microns at room temperature. Reflectance increases due to densification and purity of material were measured. Reflectance of 3D hyperpure silica was higher than 3D astroquartz silica for all wavelengths. Mechanical properties were measured in beam flexure and beam shear tests. Results indicated strengths lower than reported for slip cast fused silica. Low strengths were attributed to low densities achieved through vacuum impregnation
Asymptotic Flatness in Rainbow Gravity
A construction of conformal infinity in null and spatial directions is
constructed for the Rainbow-flat space-time corresponding to doubly special
relativity. From this construction a definition of asymptotic DSRness is put
forward which is compatible with the correspondence principle of Rainbow
gravity. Furthermore a result equating asymptotically flat space-times with
asymptotically DSR spacetimes is presented.Comment: 11 page
Chiral Extrapolation of Lattice Data for Heavy Baryons
The masses of heavy baryons containing a b quark have been calculated
numerically in lattice QCD with pion masses which are much larger than its
physical value. In the present work we extrapolate these lattice data to the
physical mass of the pion by applying the effective chiral Lagrangian for heavy
baryons, which is invariant under chiral symmetry when the light quark masses
go to zero and heavy quark symmetry when the heavy quark masses go to infinity.
A phenomenological functional form with three parameters, which has the correct
behavior in the chiral limit and appropriate behavior when the pion mass is
large, is proposed to extrapolate the lattice data. It is found that the
extrapolation deviates noticably from the naive linear extrapolation when the
pion mass is smaller than about 500MeV. The mass differences between Sigma_b
and Sigma_b^* and between Sigma_b^{(*)} and Lambda_b are also presented.
Uncertainties arising from both lattice data and our model parameters are
discussed in detail. We also give a comparision of the results in our model
with those obtained in the naive linear extrapolations.Comment: 29 pages, 9 figure
Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin
Population structure and genome-wide linkage disequilibrium (LD) were investigated in 192 Hordeum vulgare accessions providing a comprehensive coverage of past and present barley breeding in the Mediterranean basin, using 50 nuclear microsatellite and 1,130 DArT® markers. Both clustering and principal coordinate analyses clearly sub-divided the sample into five distinct groups centred on key ancestors and regions of origin of the germplasm. For given genetic distances, large variation in LD values was observed, ranging from closely linked markers completely at equilibrium to marker pairs at 50 cM separation still showing significant LD. Mean LD values across the whole population sample decayed below r 2 of 0.15 after 3.2 cM. By assaying 1,130 genome-wide DArT® markers, we demonstrated that, after accounting for population substructure, current genome coverage of 1 marker per 1.5 cM except for chromosome 4H with 1 marker per 3.62 cM is sufficient for whole genome association scans. We show, by identifying associations with powdery mildew that map in genomic regions known to have resistance loci, that associations can be detected in strongly stratified samples provided population structure is effectively controlled in the analysis. The population we describe is, therefore, shown to be a valuable resource, which can be used in basic and applied research in barle
Chiral extrapolation of lattice data for the hyperfine splittings of heavy mesons
Hyperfine splittings between the heavy vector (D*, B*) and pseudoscalar (D,
B) mesons have been calculated numerically in lattice QCD, where the pion mass
(which is related to the light quark mass) is much larger than its physical
value. Naive linear chiral extrapolations of the lattice data to the physical
mass of the pion lead to hyperfine splittings which are smaller than
experimental data. In order to extrapolate these lattice data to the physical
mass of the pion more reasonably, we apply the effective chiral perturbation
theory for heavy mesons, which is invariant under chiral symmetry when the
light quark masses go to zero and heavy quark symmetry when the heavy quark
masses go to infinity. This leads to a phenomenological functional form with
three parameters to extrapolate the lattice data. It is found that the
extrapolated hyperfine splittings are even smaller than those obtained using
linear extrapolation. We conclude that the source of the discrepancy between
lattice data for hyperfine splittings and experiment must lie in non-chiral
physics.Comment: 27 pages, 6 figure
Chiral extrapolation of lattice data for B-meson decay constant
The B-meson decay constant fB has been calculated from unquenched lattice QCD
in the unphysical region. For extrapolating the lattice data to the physical
region, we propose a phenomenological functional form based on the effective
chiral perturbation theory for heavy mesons, which respects both the heavy
quark symmetry and the chiral symmetry, and the non-relativistic constituent
quark model which is valid at large pion masses. The inclusion of pion loop
corrections leads to nonanalytic contributions to fB when the pion mass is
small. The finite-range regularization technique is employed for the
resummation of higher order terms of the chiral expansion. We also take into
account the finite volume effects in lattice simulations. The dependence on the
parameters and other uncertainties in our model are discussed.Comment: 11 pages, 3 Postscript figures, accepted for publication in EPJ
Mapping adaptation of barley to droughted environments
Identifying barley genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and the development of more drought tolerant cultivars. We assembled a population of 192 genotypes that represented landraces, old, and contemporary cultivars sampling key regions around the Mediterranean basin and the rest of Europe. The population was genotyped with a stratified set of 50 genomic and EST derived molecular markers, 49 of which were Simple Sequence Repeats (SSRs), which revealed an underlying population sub-structure that corresponded closely to the geographic regions in which the genotypes were grown. A more dense whole genome scan was generated by using Diversity Array Technology (DArT®) to generate 1130 biallelic markers for the population. The population was grown at two contrasting sites in each of seven Mediterranean countries for harvest 2004 and 2005 and grain yield data collected. Mean yield levels ranged from 0.3 to 6.2 t/ha, with highly significant genetic variation in low-yielding environments. Associations of yield with barley genomic regions were then detected by combining the DArT marker data with the yield data in mixed model analyses for the individual trials, followed by multiple regression of yield on markers to identify a multi-locus subset of significant markers/QTLs. QTLs exhibiting a pre-defined consistency across environments were detected in bins 4, 6, 6 and 7 on barley chromosomes 3H, 4H, 5H and 7H respectivel
Investigating genome wide DNA methylation in bronchial and lung fibroblasts from healthy individuals and individuals with COPD
Rationale: Lung fibroblasts are implicated in respiratory disease pathology including chronic obstructive pulmonary disease (COPD). Phenotypic differences between fibroblasts isolated from the bronchi versus the lung parenchyma have been described but no studies have compared the cell types on a genome wide scale. DNA methylation is a reversible modification of the DNA structure with the ability to affect cell function via the alteration of gene expression. Here we compared genome wide DNA methylation profiles from bronchial and lung fibroblasts and assessed modification to these profiles in cells isolated from individuals with COPD.
Methods: DNA was isolated from lung (LgF) and bronchial fibroblasts (BrF) at passage 4 and bisulphite treated. Site specific, quantitative genome wide methylation was determined using the Illumina 450K Infinium Methylation BeadChip array. Linear modelling and DMRcate functions identified differentially methylated sites and regions respectively between BrF and LgF and from cells isolated from healthy individuals versus those with COPD.
Results: 3980 CpG (methylation) sites significantly differed, following Bonferroni correction, between BrF and LgF isolated from healthy individuals. These sites had a broad distribution of effect size, with 240 CpG sites displaying a difference in methylation of >50%. 78 of these sites were validated in a second cohort of matched BrF and LgF isolated from the same individuals. There was genomic proximity to these sites and DMRcate was used to refine the individual CpG sites to 5 regions of interest associated with 5 genes; HLX, TWIST1, CREB5, SKAP2 and PRDM16. Differences in methylation were less pronounced when comparing cells isolated from healthy individuals to those with COPD. In BrF 47 DMRcate regions were identified with a maximum difference in methylation of at least 20%. In LgF 3 DMRcate regions were identified with a maximum difference in methylation of at least 20%.
Conclusions: DNA methylation profiles are significantly different between BrF and LgF but only small modifications are associated with COPD. Future work will focus on validating a methylation based marker of lung versus bronchial fibroblasts to differentiate cell types by validating our differential DNA methylation observations with gene/protein expression
- …
