656 research outputs found

    High accuracy binary black hole simulations with an extended wave zone

    Get PDF
    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalised coordinates, and allowing the spacetime to be covered with multiple communicating non-singular coordinate patches. Here we consider a regular Cartesian near zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test-case of the inspiral of an equal-mass non-spinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞r\to\infty throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)(\ell,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10−6M_{\rm irr} = 0.884355\pm20\times10^{-6} and spin $S_f/M_f^2 = 0.686923 \pm 10\times10^{-6}

    High efficiency thermionic converter studies

    Get PDF
    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion

    Multi-patch methods in general relativistic astrophysics - I. Hydrodynamical flows on fixed backgrounds

    Full text link
    Many systems of interest in general relativistic astrophysics, including neutron stars, accreting compact objects in X-ray binaries and active galactic nuclei, core collapse, and collapsars, are assumed to be approximately spherically symmetric or axisymmetric. In Newtonian or fixed-background relativistic approximations it is common practice to use spherical polar coordinates for computational grids; however, these coordinates have singularities and are difficult to use in fully relativistic models. We present, in this series of papers, a numerical technique which is able to use effectively spherical grids by employing multiple patches. We provide detailed instructions on how to implement such a scheme, and present a number of code tests for the fixed background case, including an accretion torus around a black hole.Comment: 26 pages, 20 figures. A high-resolution version is available at http://www.cct.lsu.edu/~bzink/papers/multipatch_1.pd

    Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars

    No full text
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The following aspects of our code have been validated: the generation of initial data representing perturbed general relativistic polytropic models (both rotating and nonrotating), the long-term evolution of relativistic stellar models, and the coupling of our evolution code to analysis modules providing, for instance, the detection of apparent horizons or the extraction of gravitational waveforms. The tests involve single nonrotating stars in stable equilibrium, nonrotating stars undergoing radial and quadrupolar oscillations, nonrotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, nonrotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasiradial oscillations. We have carried out evolutions in full general relativity and compared the results to those obtained either with perturbation techniques, or with lower dimensional numerical codes, or in the Cowling approximation (in which all the perturbations of the spacetime are neglected). In all cases an excellent agreement has been found. The numerical evolutions have been carried out using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. In particular, we have found the "monotonized central differencing" limiter to be particularly effective in evolving the relativistic stellar models considered. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date

    Numerical relativity with characteristic evolution, using six angular patches

    Get PDF
    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue

    Automatic online motor control is intact in Parkinson’s disease with and without perceptual awareness

    Get PDF
    In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson’s disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients (n = 14) and healthy controls (n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls’. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses

    Accurate Visuomotor Control below the Perceptual Threshold of Size Discrimination

    Get PDF
    Background: Human resolution for object size is typically determined by psychophysical methods that are based on conscious perception. In contrast, grasping of the same objects might be less conscious. It is suggested that grasping is mediated by mechanisms other than those mediating conscious perception. In this study, we compared the visual resolution for object size of the visuomotor and the perceptual system. Methodology/Principal Findings: In Experiment 1, participants discriminated the size of pairs of objects once through perceptual judgments and once by grasping movements toward the objects. Notably, the actual size differences were set below the Just Noticeable Difference (JND). We found that grasping trajectories reflected the actual size differences between the objects regardless of the JND. This pattern was observed even in trials in which the perceptual judgments were erroneous. The results of an additional control experiment showed that these findings were not confounded by task demands. Participants were not aware, therefore, that their size discrimination via grasp was veridical. Conclusions/Significance: We conclude that human resolution is not fully tapped by perceptually determined thresholds

    Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity

    Full text link
    The accurate modeling of gravitational radiation is a key issue for gravitational wave astronomy. As simulation codes reach higher accuracy, systematic errors inherent in current numerical relativity wave-extraction methods become evident, and may lead to a wrong astrophysical interpretation of the data. In this paper, we give a detailed description of the Cauchy-characteristic extraction technique applied to binary black hole inspiral and merger evolutions to obtain gravitational waveforms that are defined unambiguously, that is, at future null infinity. By this method we remove finite-radius approximations and the need to extrapolate data from the near zone. Further, we demonstrate that the method is free of gauge effects and thus is affected only by numerical error. Various consistency checks reveal that energy and angular momentum are conserved to high precision and agree very well with extrapolated data. In addition, we revisit the computation of the gravitational recoil and find that finite radius extrapolation very well approximates the result at \scri. However, the (non-convergent) systematic differences to extrapolated data are of the same order of magnitude as the (convergent) discretisation error of the Cauchy evolution hence highlighting the need for correct wave-extraction.Comment: 41 pages, 8 figures, 2 tables, added references, fixed typos. Version matches published version

    Relative palatability and efficacy of brodifacoum-25D conservation rodenticide pellets for mouse eradication on Midway Atoll

    Get PDF
    Invasive mice (Mus spp.) can negatively impact island species and ecosystems. Because fewer island rodent eradications have been attempted for mice compared to rats (Rattus spp.), less is known about efficacy and palatability of rodenticide baits for mouse eradications. We performed a series of bait acceptance and efficacy cage trials using a standard formulation of brodifacoum-based rodenticide on wild-caught mice from Sand Island, Midway Atoll, to help inform a proposed eradication there. Mice were offered ad libitum brodifacoum pellets along with various alternative food sources, and a “no choice” treatment group received only bait pellets. Mortality in the no choice trial was 100%; however, when offered alternative foods, mice preferred the alternative diets to the bait, leading to low mortality (40%). Because there was concern that the bittering agent Bitrex¼ in the formulation may have reduced palatability, we conducted a subsequent trial comparing brodifacoum bait with and without Bitrex. Mortality in the with-Bitrex treatment group was slightly higher, indicating that the bittering agent was not likely responsible for low efficacy. Laboratory trials cannot account for the numerous environmental and behavioral factors that influence bait acceptance nor replicate the true availability of alternative food sources in the environment, so low efficacy results from these trials should be interpreted cautiously and not necessarily as a measure of the likelihood of success or failure of a proposed eradication

    Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars

    Get PDF
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.Comment: 19 pages, 17 figure
    • 

    corecore