888 research outputs found

    Retrosynthese von Perlmutt

    No full text

    Recognisable languages over monads

    Full text link
    The principle behind algebraic language theory for various kinds of structures, such as words or trees, is to use a compositional function from the structures into a finite set. To talk about compositionality, one needs some way of composing structures into bigger structures. It so happens that category theory has an abstract concept for this, namely a monad. The goal of this paper is to propose monads as a unifying framework for discussing existing algebras and designing new algebras

    Dual Space of a Lattice as the Completion of a Pervin Space

    Get PDF
    16th International Conference, RAMiCS 2017, Lyon, France, May 15-18, 2017, ProceedingsInternational audienceThis survey paper presents well-known results from a new angle. A Pervin space is a set X equipped with a set of subsets,called the blocks of the Pervin space. Blocks are closed under finite intersections and finite unions and hence form a lattice of subsets of X. Pervin spaces are thus easier to define than topological spaces or (quasi)-uniform spaces. As a consequence, most of the standard topological notions, like convergence and cluster points, specialisation order, filtersand Cauchy filters, complete spaces and completion are much easier to define for Pervin spaces. In particular, the completion of a Pervin space turns out to be the dual space (in the sense of Stone) of the original lattice.We show that any lattice of subsets can be described by a set of inequations of the form u ≀ v, where u and v are elements of its dual space. Applications to formal languages and complexity classes are given.Cet article de synthĂšse prĂ©sente des rĂ©sultats bien connus sous un nouvel angle. Un espace de Pervin est unensemble X Ă©quipĂ© d'un ensemble de parties, appelĂ© les blocs de l'espace de Pervin. Les blocs sont fermĂ©s par intersection finie et union finie et forment ainsi un treillis de parties de X. Les espaces de Pervin sont doncplus faciles Ă  dĂ©finir que les espaces topologiques ou les espaces (quasi-)uniformes. Par consĂ©quent, la plupart des notions topologiques, comme la convergence et les points d'adhĂ©rence, l'ordre de spĂ©cialisation, les filtres de Cauchy, les espaces complets et la complĂ©tion sont beaucoup plus faciles Ă  dĂ©finir pour les espaces Pervin. En particulier, la complĂ©tion d'un espace Pervin s'avĂšre ĂȘtre l'espace dual (au sens de Stone) du treillis de dĂ©part.Nous montrons que tout treillis de parties peut ĂȘtre dĂ©crit par un ensemble d'inĂ©quations de la forme u ≀ v, oĂč u et v sont des Ă©lĂ©ments de son espace dual. On donne des applications aux langages formels et aux classes de complexitĂ©

    Finitely generated free Heyting algebras via Birkhoff duality and coalgebra

    Get PDF
    Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods

    Microgrooves and microrugosities in titanium implant surfaces: an in vitro and in vivo evaluation

    Get PDF
    This article belongs to the Special Issue Clinical Implants and the Biocompatibility of Biodegradable BiomaterialsThe physical characteristics of an implant surface can determine and/or facilitate osseointegration processes. In this sense, a new implant surface with microgrooves associated with plus double acid treatment to generate roughness was evaluated and compared in vitro and in vivo with a non-treated (smooth) and double acid surface treatment. Thirty disks and thirty-six conical implants manufactured from commercially pure titanium (grade IV) were prepared for this study. Three groups were determined, as described below: Group 1 (G1), where the samples were only machined; group 2 (G2), where the samples were machined and had their surface treated to generate roughness; and test group 3 (G3), where the samples were machined with microgrooves and the surface was treated to generate the roughness. For the in vitro analysis, the samples were submitted to scanning microscopy (SEM), surface profilometry, the atomic force microscope (MFA) and the surface energy test. For the in vivo analyses, thirty-six implants were placed in the tibia of 9 New Zealand rabbits in a randomized manner, after histological and histomorphometric analysis, to determine the level of contact between the bone and implant (BIC%) and the bone area fraction occupancy (BAFO%) inside of the threads. The data collected were statistically analyzed between groups (p < 0.05). The in vitro evaluations showed different roughness patterns between the groups, and the G3 group had the highest values. In vivo evaluations of the BIC% showed 50.45 ± 9.57% for the G1 group, 55.32 ± 10.31% for the G2 group and 68.65 ± 9.98% for the G3 group, with significant statistical difference between the groups (p < 0.0001). In the BAFO% values, the G1 group presented 54.97 ± 9.56%, the G2 group 59.09 ± 10.13% and the G3 group 70.12 ± 11.07%, with statistical difference between the groups (p < 0.001). The results obtained in the evaluations show that the surface with microgrooves stimulates the process of osseointegration, accelerating the healing process, increasing the contact between the bone and the implant and the area of new bone formation

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    • 

    corecore