9,225 research outputs found
Recommended from our members
Fearful faces have a sensory advantage in the competition for awareness
Only a subset of visual signals give rise to a conscious percept. Threat signals, such as fearful faces, are particularly salient to human vision. Research suggests that fearful faces are evaluated without awareness and preferentially promoted to conscious perception. This agrees with evolutionary theories that posit a dedicated pathway specialized in processing threat-relevant signals. We propose an alternative explanation for this "fear advantage." Using psychophysical data from continuous flash suppression (CFS) and masking experiments, we demonstrate that awareness of facial expressions is predicted by effective contrast: the relationship between their Fourier spectrum and the contrast sensitivity function. Fearful faces have higher effective contrast than neutral expressions and this, not threat content, predicts their enhanced access to awareness. Importantly, our findings do not support the existence of a specialized mechanism that promotes threatening stimuli to awareness. Rather, our data suggest that evolutionary or learned adaptations have molded the fearful expression to exploit our general-purpose sensory mechanisms
Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model
Multilingual models for Automatic Speech Recognition (ASR) are attractive as
they have been shown to benefit from more training data, and better lend
themselves to adaptation to under-resourced languages. However, initialisation
from monolingual context-dependent models leads to an explosion of
context-dependent states. Connectionist Temporal Classification (CTC) is a
potential solution to this as it performs well with monophone labels.
We investigate multilingual CTC in the context of adaptation and
regularisation techniques that have been shown to be beneficial in more
conventional contexts. The multilingual model is trained to model a universal
International Phonetic Alphabet (IPA)-based phone set using the CTC loss
function. Learning Hidden Unit Contribution (LHUC) is investigated to perform
language adaptive training. In addition, dropout during cross-lingual
adaptation is also studied and tested in order to mitigate the overfitting
problem.
Experiments show that the performance of the universal phoneme-based CTC
system can be improved by applying LHUC and it is extensible to new phonemes
during cross-lingual adaptation. Updating all the parameters shows consistent
improvement on limited data. Applying dropout during adaptation can further
improve the system and achieve competitive performance with Deep Neural Network
/ Hidden Markov Model (DNN/HMM) systems on limited data
Recommended from our members
Autonomic arousal and attentional orienting to visual threat are predicted by awareness
The rapid detection and evaluation of threat is of fundamental importance for survival. Theories suggest that this evolutionary pressure has driven functional adaptations in a specialized visual pathway that evaluates threat independently of conscious awareness. This is supported by evidence that threat-relevant stimuli rendered invisible by backward masking can induce physiological fear responses and modulate spatial attention. The validity of these findings has since been questioned by research using stringent, objective measures of awareness. Here, we use a modified continuous flash suppression paradigm to ask whether threatening images induce adaptive changes in autonomic arousal, attention, or perception when presented outside of awareness. In trials where stimuli broke suppression to become visible, threatening stimuli induced a significantly larger skin conductance response than nonthreatening stimuli and attracted spatial attention over scrambled images. However, these effects were eliminated in trials where observers were unaware of the stimuli. In addition, concurrent behavioral data provided no evidence that threatening images gained prioritized access to awareness. Taken together, our data suggest that the evaluation and spatial detection of visual threat are predicted by awareness
Ad Hoc Microphone Array Calibration: Euclidean Distance Matrix Completion Algorithm and Theoretical Guarantees
This paper addresses the problem of ad hoc microphone array calibration where
only partial information about the distances between microphones is available.
We construct a matrix consisting of the pairwise distances and propose to
estimate the missing entries based on a novel Euclidean distance matrix
completion algorithm by alternative low-rank matrix completion and projection
onto the Euclidean distance space. This approach confines the recovered matrix
to the EDM cone at each iteration of the matrix completion algorithm. The
theoretical guarantees of the calibration performance are obtained considering
the random and locally structured missing entries as well as the measurement
noise on the known distances. This study elucidates the links between the
calibration error and the number of microphones along with the noise level and
the ratio of missing distances. Thorough experiments on real data recordings
and simulated setups are conducted to demonstrate these theoretical insights. A
significant improvement is achieved by the proposed Euclidean distance matrix
completion algorithm over the state-of-the-art techniques for ad hoc microphone
array calibration.Comment: In Press, available online, August 1, 2014.
http://www.sciencedirect.com/science/article/pii/S0165168414003508, Signal
Processing, 201
Activation and regioselectivity of five-membered cyclic thionocarbamates to nucleophilic attack
The cyclic thionocarbamate of alaninol undergoes nucleophilic attack by sulfur nucleophiles at 5-C to give 1-thiopropyl-2-amine derivatives when derivatised on nitrogen with a Boc group. Iodide under microwave conditions causes a rearrangement to the isomeric thiazolidinone, while "hard" nucleophiles react at the thione group to yield a variety of product types by subsequent C–N or C–O cleavage. X-ray crystallography studies showed that the N-Boc group reduces delocalisation of electron density from nitrogen into the thione group, and thus promotes activation of the ring to nucleophilic attack
Superior sperm competitors sire higher-quality young
The evolution of polyandry remains controversial. This is because, unlike males, in many cases multiple mating by females does not increase fecundity and inevitably involves some costs. As a result, a large number of indirect benefit models have been proposed to explain polyandry. One of these, the good sperm hypothesis, posits that high-quality males are better sperm competitors and sire higher-quality offspring. Hence, by mating multiply, females produce offspring of superior quality. Despite being potentially widely applicable across species, this idea has received little attention. In a laboratory experiment with yellow dung flies ( Scathophaga stercoraria ) we found that males that were more successful in sperm competition also had offspring that developed faster. There was no relationship between paternal success in sperm competition and the ability of offspring to survive post-emergence starvation. Since faster development times are likely to be advantageous in this species, our data provide some support for polyandry evolving as a means of producing higher-quality offspring via sperm competition
Conductivity in Jurkat cell suspension after ultrashort electric pulsing
Ultrashort electric pulses applied to similar cell lines such as Jurkat and HL-60 cells can produce markedly different results , which have been documented extensively over the last few years. We now report changes in electrical conductivity of Jurkat cells subjected to traditional electroporation pulses (50 ms pulse length) and ultrashort pulses (10 ns pulse length) using time domain dielectric spectroscopy (TDS). A single 10 ns, 150 kV/cm pulse did not noticeably alter suspension conductivity while a 50 ms, 2.12 kV/cm pulse with the same energy caused an appreciable conductivity rise. These results support the hypothesis that electroporation pulses primarily interact with the cell membrane and cause conductivity rises due to ion transport from the cell to the external media, while pulses with nanosecond duration primarily interact with the membranes of intracellular organelles. However, multiple ultrashort pulses have a cumulative effect on the plasma membrane, with five pulses causing a gradual rise in conductivity up to ten minutes post-pulsing
S-, P- and D-wave resonances in positronium-sodium and positronium-potassium scattering
Scattering of positronium (Ps) by sodium and potassium atoms has been
investigated employing a three-Ps-state coupled-channel model with Ps(1s,2s,2p)
states using a time-reversal-symmetric regularized electron-exchange model
potential fitted to reproduce accurate theoretical results for PsNa and PsK
binding energies. We find a narrow S-wave singlet resonance at 4.58 eV of width
0.002 eV in the Ps-Na system and at 4.77 eV of width 0.003 eV in the Ps-K
system. Singlet P-wave resonances in both systems are found at 5.07 eV of width
0.3 eV. Singlet D-wave structures are found at 5.3 eV in both systems. We also
report results for elastic and Ps-excitation cross sections for Ps scattering
by Na and K.Comment: 9 pages, 5 figures, Accepted in Journal of Physics
Nanosecond electric pulses penetrate the nucleus and enhance speckle formation
Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA–protein complexes
- …
