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Abstract

This paper addresses the problem of ad hoc microphone array calibration where only partial

information about the distances between the microphones is available. We construct a matrix

consisting of the pairwise distances and propose to estimate the missing entries based on a novel

Euclidean distance matrix completion algorithm by alternative low-rank matrix completion and

projection onto the Euclidean distance space. This approach confines the recovered matrix to the

EDM cone at each iteration of the matrix completion algorithm. The theoretical guarantees of

the calibration performance are obtained considering the random and locally structured missing

entries as well as the measurement noise on the known distances. The proposed approach has

been evaluated using real data recordings where the distance of the close-by microphones are

estimated based on the coherence model of an enclosure diffuse noise field. The results confirm

that the proposed algorithm outperforms the state-of-the-art calibration techniques.

Keywords: Ad hoc microphone array calibration, Diffuse noise coherence model, Euclidean

distance matrix completion, Cadzow algorithm, EDM cone
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1. Introduction

Ad hoc microphone arrays consist of a set of sensor nodes spatially distributed over the acous-

tic field, in an ad hoc fashion. Processing of the data acquired with distributed sensors involves

challenges attributed to the issues such as asynchronous sampling and unknown microphone po-

sitions. In this paper, we address the problem of finding the microphone positions also referred

to as microphone calibration. Finding the correct positioning of the microphones plays a key

role in distant audio processing tasks such as source localization and tracking [1], high-quality

acquisition for distant speech separation [2] and recognition [3]. Recent advances in mobile

computing and communication technologies enable using cell phones, PDA’s or tablets as a flex-

ible acquisition set-up providing an ad hoc network of microphones. However, the unknown

prior information on relative positions of the microphones is a key problem to achieve effective

data processing. In the following, we review some of the prior approaches for microphone array

calibration.

Sachar et al. [4] presented a set-up using a pulsed acoustic excitation generated by five

domed tweeters. The transmit times between speakers and microphones were used to calibrate

the microphones. Raykar et al. [5] considered a maximum length sequence or chirp signal in

a distributed computing platform. The time difference of arrival of microphone signals were

then computed by cross-correlation and used for estimating the microphone locations. Since

the original signal is known, these techniques are robust to noise and reverberation. Flanagan

and Bell [6] proposed a joint source-sensor localization scheme based on the Weiss-Friedlander

method where the sensor location and direction of arrival of the sources are estimated alternately

until the algorithm is converged. Shang et al. [7] formulated an energy-based method for maxi-

mum likelihood estimation of joint source-sensor positions. This method requires several active

sources for accurate localization. Recently, McCowan and Lincoln [8] exploited characteristics

of a diffuse noise field model for microphone calibration. A diffuse noise field is characterized by

noise signals that propagate with equal probability in all directions and its coherence is defined

by the sinc function of the distance of the two microphones. The distances can thus be estimated

by fitting the computed noise coherence with the sinc function in the least square sense. In this
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paper, we use the coherence model of a diffuse field for pairwise distance estimation due to its

practical assumptions for distant audio applications [9, 10, 11] and no requirement for activating

a specific source signal. However, the proposed algorithm and theoretical results are applicable

for calibration of a general ad hoc microphone array network.

The state-of-the-art techniques for distance estimation and microphone calibration are usu-

ally appropriate for conventional compact arrays. Estimation of the pairwise distances becomes

unreliable as the distances between the microphones are increased. Hence, the purpose of this

paper is to enable microphone calibration when some of the pairwise distances are missing. The

matrix consisted of the squared pairwise distances has very low rank (explained in Section 3.1).

The low-rank property has been investigated in the past years to devise efficient optimization

schemes for matrix completion, i.e. recovering a low-rank matrix from randomly known entries.

Candès et al. [12] showed that a small random fraction of the entries are sufficient to reconstruct

a low-rank matrix exactly. Keshavan et al. proposed a matrix completion algorithm known as

OptSpace and showed its optimality [13]. Furthermore, they proved that their algorithm is robust

against noise [14]. Drineas et al. [15] exploited the low rank property to recover the distance

matrix. However, they assume a nonzero probability of obtaining accurate distances for any pair

of sensors regardless of their distance. This assumption severely restricts the applicability of

their result for the microphone array calibration problem.

In this paper, we first estimate the pairwise distances of the microphones in close proximity

using the coherence model of the signals of the two microphones in a diffuse noise field using

the improved method described in [16]; this approach implies a local connectivity constraint as

the pairwise distances of the further microphones can not be estimated. We construct a matrix

of all the pairwise distances with missing entries corresponding to the unknown distances. We

exploit the low-rank property of the square of this matrix to enable estimation of all the pairwise

distances using matrix completion approach. The goal of this paper is to show that exploiting

the combination of the rank condition of Euclidean distance matrices (EDMs), similarity in the

measured distances, and projection on the EDM cone enables us to estimate the microphone

array geometry effectively from only partial measurements of the pairwise distances. To this
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end, we show that matrix completion is capable of finding the missing entries in our scenario

and provide the theoretical guarantees to bound the error for ad hoc microphone calibration

considering the local connectivity of the noisy known entries. To increase the accuracy, we

incorporate the properties of EDMs in the matrix completion algorithm. We show that imposing

EDM characteristics on matrix completion improves the robustness and accuracy of extracting

the ad hoc microphone geometry.

The rest of the paper is organized as follows. In Section 2, we explain how pairwise dis-

tances of the microphones are estimated using the coherence model of the diffuse noise field as

an example use case of the proposed method. Section 3 describes the mathematical basis and the

model used for the calibration problem. The proposed Euclidean distance matrix completion al-

gorithm is elaborated in Section 4. Section 5 is dedicated to the theoretical guarantees for ad hoc

microphone array calibration based on matrix completion. The related methods are investigated

in Section 6 and the experimental results on real data recordings are presented in section 7. The

conclusions are drawn in Section 8.

2. Example Use Case

We consider N microphones located at random positions on a large circular table in a meet-

ing room with homogeneous reverberant acoustics. In the time intervals that there is no active

speaker, diffuse noise is the dominant signal in the room. The table is located at the center of the

room, hence deviation from diffuseness near the walls can be neglected. Based on the theory of

the diffuse noise model, the distance of each two close microphones can be estimated by com-

puting the coherence of their signals Γ, and fitting a sinc function based on the relation expressed

as

Γi j(ω) = sinc
(
ωdi j

c

)
, (1)

where ω is the frequency, di j is the distance between the two microphones i and j and c is the

speed of sound [17]. Figure 1 represents an example of the coherence and the fitted sinc function.
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Figure 1: Coherence of the signal of two microphones at di j = 20 cm and the fitted sinc function
using real data recordings.

In practice, if the distance between the sensors is large (e.g. greater than 73 cm [16]) we

observe deviations from the diffuse characteristics. The maximum distance that can be computed

by this method is assumed to be dmax. Therefore, pairwise distances greater than dmax are missing

implying a locality structure in the missing entries in the distance matrix D consisted of the

pairwise distances. This locality constraint in distance estimation is a typical problem in ad hoc

microphone arrays [18]. In addition, the computation algorithm can lead to deviation from the

model resulting in unreliable estimates of the short distances causing random missing entries in

D. Furthermore, the known entries are noisy due to measurement inaccuracies and violation of

diffuseness.

3. Problem Formulation

3.1. Distance Matrix

Consider a distance matrix DN×N consisting of the distances between N microphones con-

structed as

D =
[
di j

]
, di j =

∥∥∥xi − x j

∥∥∥ , i, j ∈ {1, . . . ,N} , (2)

where di j is the Euclidean distance between microphones i and j located at xi and x j. Therefore,

D is a symmetric matrix and it is often full rank.
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Let XN×ζ denote the position matrix whose ith row, xT
i ∈ Rζ , is the position of microphone

i in ζ-dimensional Euclidean coordinate where microphones are deployed and .T denotes the

transpose operator. By squaring the elements of D, we construct a matrix MN×N which can be

written as

M = 1NΛ
T + Λ1N

T − 2XXT , (3)

where 1N ∈ RN is the all ones vector and Λ = (X ◦ X)1ζ where ◦ denotes the Hadamard product.

We observe that M is the sum of three matrices of rank 1, 1 and at most ζ respectively. Therefore,

the rank of the squared distance matrix constructed of the elements Mi j =
[
d2

i j

]
is at most ζ +

2 [15]. For instance, if the microphones are located on a plane or shell of a sphere, M has rank

4 and if they are placed on a line or circle, the rank is exactly 3. Hence, there is significant

dependency between the elements of M and exploiting this low-rank property is the core of the

proposed method in this paper.

3.2. Objective

The noisy estimates of the pairwise distances is modeled as

d̃i j = di j + wi j ; D̃ = D + W , (4)

where wi j is the measurement noise for distance di j and W is the corresponding measurement

noise matrix. We introduce a noise matrix on the squared distance matrix as

Z = M̃ − M = D̃ ◦ D̃ − D ◦ D , (5)

where M̃ is the noisy squared distance matrix.

As described in Section 2, there are two kinds of missing entries. The first group is consisted

of the structured missing entries corresponding to the distances greater than dmax. We denote this

group by S defined as

S = {(i, j) : di j ≥ dmax} , (6)
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where di j =
∥∥∥xi − x j

∥∥∥. These structured missing entries are denoted by a matrix

Ds
i j =


Di j if (i, j) ∈ S

0 otherwise

Thus, the noiseless recognized pairwise distance matrix is given by

Ds̄ = D − Ds ,

and we obtain the known squared distance matrix as

Ms = Ds ◦ Ds

M s̄ = Ds̄ ◦ Ds̄ = M − Ms .

(7)

Considering the noise on the known entries, we obtain

M̃ s̄ = M s̄ + Z s̄ , (8)

where Z s̄ denotes the noise on the known entries in the squared distance matrix.

For modeling the random missing entries, we assume that each entry is sampled with proba-

bility p. Sampling can be introduced by a projection operator on an arbitrary matrix QN×N , given

by

ΨE(Q)i j =


Qi j if (i, j) ∈ E

0 otherwise
(9)

where E ⊆ [N]× [N] denotes the known entries after random erasing process and has cardinality

|E| ≈ pN2. Therefore, the final recognized squared distance matrix is given by

ME = ΨE(M̃ s̄) . (10)

The goal of the matrix recovery algorithm is to find the missing entries and remove the noise,
7



given matrix ME .

3.3. Noise Model

The level of noise in extracting the pairwise distances, wi j in (4), increases as the distances

grow [16]. We model this effect through

W = Υ ◦ D ,

where the normalized noise matrix ΥN×N is consisted of entries with sub-Gaussian distribution

with variance ς2, thus [14]

P(|Υi j| ≥ β) ≤ 2 e−
β2

2ς2 . (11)

Based on (8), Z s̄
i j = 2d2

i jΥi j + d2
i jΥ

2
i j; the physical setup confines |Z s̄

i j| ≤ 2a where a is the radius

of the table.

3.4. Evaluation Measure

Extracting the absolute position of the microphones deployed in ζ dimensional space requires

at least ζ + 1 anchor points in addition to the distance matrix. Therefore, in a scenario that the

only available information are pairwise distances, the evaluation measure must quantify the error

in estimation of the relative position of the microphones thus robust to the rigid transforma-

tions (translation, rotation and reflection). Hence, we quantify the distance between the actual

locations X and estimated locations X̂ as [19]

dist(X, X̂) =
1
N

∥∥∥JXXT J − JX̂X̂T J
∥∥∥

F ,

J = IN − (1/N)1N1T
N

(12)

where ‖·‖F denotes the Frobenius norm and IN is the N × N identity matrix. The distance

measure stated in (12) is useful to compare the performance of different methods in terms of

microphone array geometry estimation.

Table 1 summarizes the set of important notations.
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Table 1: Summary of notations.

Symbol Meaning Symbol Meaning

N number of microphones D complete noiseless distance matrix
a radius of the circular table on which microphones are distributed M squared distance matrix
ς normalized standard deviation of noise M̃ noisy squared distance matrix
ΨE projection into matrices with entries on index set E M̂ estimated squared distance matrix
Pe projection to EDM cone Z noise matrix
p probability of having random missing entries ME observed matrix
dmax radius of the circle defining structured observed entries X positions matrix
Ms distance matrix with observed entries on index set S X̂ estimated positions matrix

4. Euclidean Distance Matrix Completion Algorithm

The approach proposed in this paper exploits low-rank matrix completion and incorporates

the EDM properties for recovering the distance matrix.

4.1. Matrix Completion

We recall our problem of having N microphones distributed on a space of dimension ζ.

Hence, the squared distance matrix M has rank η = ζ + 2, but it is only partially known. The

objective is to recover MN×N of rank η � N from a sampling of its entries without having

to ascertain all the N2 entries, or collect N2 or more measurements about M. The approach

proposed through matrix completion relies on the fact that a low-rank data matrix carries much

less information than its ambient dimension implies. Intuitively, as the matrix M has (2N − η)η

degrees of freedom1, we need to know at least ηN of the row entries as well as ηN of the column

entries reduced by η2 number of the repeated values to recover the entire elements of M.

Given ME defined in (10), the matrix completion recovers an estimate of the distance matrix

M̂ through the following optimization

Minimize rank (M̂ )

subject to M̂i j = Mi j , (i, j) ∈ E
(13)

1The degrees of freedom can be estimated by counting the parameters in the singular value decomposition (the number
of degrees of freedom associated with the description of the singular values and of the left and right singular vectors).
When the rank is small, this is considerably smaller than N2 [20].
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In this paper, we use the procedure of OptSpace proposed by Keshavan et al. [14] for es-

timating a matrix given the desired rank η. This algorithm is implemented in three steps: (1)

Trimming, (2) Projection and (3) Minimizing the cost function.

In the trimming step, a row or a column is considered to be over-represented if it contains

more samples than twice the average number of samples per row or column. These rows or

columns can dominate the spectral characteristics of the observed matrix ME . Thus, some of

their entries are removed uniformly at random from the observed matrix. Let M̃E be the resulting

matrix of this trimming step.

In the projection step, we first compute the singular value decomposition (SVD) of M̃E thus

M̃E =

N∑
i=1

σi(M̃E)U.iVT
.i , (14)

where σi(·) denotes the ith singular value of the matrix and U.i and V.i designate the ith column of

the corresponding SVD matrices. Then, the rank-η projection, Pη(·) returns the matrix obtained

by setting to 0 all but the η largest singular values as

Pη(M̃E) = (N2/|E|)
η∑

i=1

σi(M̃E)U.iVT
.i = U0S0VT

0 . (15)

Starting from the initial guess provided by the rank-η projection Pη(M̃E), U = U0 , V = V0 and

S = S0, the final step solves a minimization problem stated as follows: Given U ∈ RN×η,V ∈

RN×η, find

F(U,V) = min
S∈Rη×η

F (U,V,S) ,

F (U,V,S) =
1
2

∑
(i, j)∈E

(Mi j − (USVT )i, j)2
(16)

F(U,V) is determined by minimizing the quadratic functionF over S, U, V estimated by gradient

decent with line search in each iteration. This last step tries to get us as close as possible to the

correct low-rank matrix M.
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4.2. Cadzow Projection to the Set of EDM Properties

The classic matrix completion algorithm as described above recovers a low-rank matrix with

elements as close as possible to the known entries. However, the recovered matrix does not nec-

essarily correspond to a Euclidean distance matrix; for example, EDMs are symmetric with zero

diagonal elements. These properties are not incorporated in the matrix completion algorithm.

Hence, we modify the aforementioned procedure to have, as output, matrices that are closer to

EDMs [16].

To this end, we apply a Cadzow-like method. The Cadzow algorithm [21] (also known as

Papoulis-Gershberg) is a method for finding a signal which satisfies a composite of properties

by iteratively projecting the signal into the property sets. We modify the matrix completion

algorithm by inserting an extra step at each iteration. In the classic version of this algorithm a

simple rank-η approximation is used as the starting point for the iterations using gradient descent

on (16). After each iteration of the gradient descent, we apply the transformation Pc : RN×N 7−→

SN
h on the obtained matrix where SN

h is the space of symmetric, positive hollow matrices, to make

sure that the output satisfies the following properties

M̂ ∈ SN
h ⇐⇒



di j = 0⇔ xi = x j

di j > 0, i , j

di j = d ji

(17)

for i, j ∈ [N]; nonnegativity and symmetry are achieved by setting all the negative elements to

zero and averaging the symmetric elements.

4.3. Matrix Completion with Projection onto the EDM cone

In section 4.2, three characteristics of EDMs are employed through the Cadzow projection

to reduce the reconstruction error of the distance matrix. In order to increase the accuracy even

further, we propose to project to the cone of Euclidean distance matrix, EDMN , at each iteration

of the algorithm. In other words, after one step of the gradient descent method on the Cartesian

product of two Grassmannian manifolds G, we apply a projection, Pe : RN×N 7−→ EDMN to
11



Figure 2: Matrix completion with projection onto the EDM cone.

decrease the distance between the estimated matrix and the EDM cone. This is visualized in

Figure 2. Note that the demonstration of the cone and the manifold are not mathematically

accurate and only serve as visualizations (The dimension of the cone and the manifold are too

large to be demonstrated graphically). The projected matrix must satisfy the following EDM

properties [22]

M̂ ∈ EDMN
⇐⇒



−zT M̂z ≥ 0

1T z = 0

(∀‖z‖ = 1)

M̂ ∈ SN
h

(18)

The EDM properties include the triangle inequality, thus

di j ≤ dik + dk j, i , j , k , (19)
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as well as the relative-angle inequality; ∀i, j, l , k ∈ [N], i < j < l, and for N ≥ 4 distinct points

{xk}, the inequalities

cos(τ jkl+τlk j) ≤ cos τik j ≤ cos(τikl − τlk j)

0 ≤ τikl, τlk j, τik j ≤ π

(20)

where τik j denotes the angle between vectors at xk and it is satisfied at each position xk.

The projection Pe must map the output of matrix completion to the closest matrix on EDMN

with the properties listed in (18). The projection onto SN
h is achieved by Pc implemented via

Cadzow; thereby, we define (Uc,Vc,Sc) = Pc(Uk+1/2,Vk+1/2,Sk+1/2). To achieve the full EDM

properties, we search in the EDM cone using a cost function defined as

H(X) =
∥∥∥1NΛ

T + Λ1N
T − 2XXT − UcScVT

c

∥∥∥2
F . (21)

To minimize the cost function, we start from the vertex of the EDMN thus assume that all mi-

crophones are located in the origin of the space Rζ . Denoting the location of microphone i with

xi = [xi1, xi2, ...xiζ]T , H(X) is a polynomial function of xi1 of degree 4. The minimum of H(X)

with respect to xi1 can be computed by equating the partial derivation of equation (21) to zero to

obtain the new estimates, thus

X̂ = arg min
X
H(X)

(Uk+1,Vk+1,Sk+1) = SVD (1NΛ̂
T + Λ̂1N

T − 2X̂X̂T )

(22)

where Λ̂ = (X̂ ◦ X̂)1ζ . The stopping criteria is satisfied when the new estimates differ from the

old ones by less than a threshold.

The modified iterations can be summarized in two steps:

13



• iteration k + 1/2:

Uk+1/2 = Uk + ϑ
∂F(Uk,Vk)

∂U

Vk+1/2 = Vk + ϑ
∂F(Uk,Vk)

∂V

Sk+1/2 = arg min
S
F (Uk,Vk,S)

• iteration k + 1:

(Uk+1,Vk+1,Sk+1) = Pe(Uk+1/2,Vk+1/2,Sk+1/2) (23)

where ϑ is the step-size found using line search.

Once the distance matrix is recovered by either classic or Cadzow matrix completion al-

gorithms, MDS is used to find the coordinates of the microphones, X̂, whereas the proposed

Euclidean distance matrix completion algorithm directly yields the coordinates.

5. Theoretical Guarantees for Microphone Calibration

In this section, we derive the error bounds on the reconstruction of the positions of N micro-

phones distributed randomly on a circular table of radius a using the matrix completion algorithm

and considering the locality constraint on the known entries, i.e. di j ≤ dmax, as well as the noise

model with the standard deviation ς as stated in (11). Based on the following theorem we guar-

antee that there is an upper bound on the calibration error which decreases by the number of

microphones.

Theorem 1. There exist constants C1 and C2(ς), such that the output X̂ satisfies

dist(X, X̂) ≤ C1
a2 log2 N

pN
+ C2(ς)

d4
max

a2 (24)

with probability greater than 1 − N−3, provided that the right-hand side is less than ση(M)/N.
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5.1. Proof of Theorem 1

The squared distance matrix M ∈ RN×N with rank−η, singular values σk(M), k ∈ [η] and

singular value decomposition UΣUT is (µ1, µ2)-incoherent if the following conditions hold.

A1. For all i ∈ [N]:
∑η

k=1 U2
ik ≤ η µ1 .

A2. For all i, j ∈ [N]:
∣∣∣ ∑η

k=1 Uik(σk(M)/σ1(M))U jk

∣∣∣ ≤ √η µ2 .

where without loss of generality, UT U = NI.

For a (µ1, µ2)-incoherent matrix M, (25) is correct with probability greater than 1 − N−3;

cf. [14]-Theorem 1.2.

1
N
‖M − M̂‖F ≤

C′1 ‖ΨE(Ms)‖2 + C′2
∥∥∥ΨE(Z s̄)

∥∥∥
2

p N
, (25)

provided that

|E| ≥ C′1Nκ2
η(M) max

{
µ1η log N ; µ2

1η
2κ4
η(M) ; µ2

2η
2κ4
η(M)

}
, (26)

and
C′1 ‖ΨE(Ms)‖2 + C′2

∥∥∥ΨE(Z s̄)
∥∥∥

2

p N
≤ ση(M)/N , (27)

where the condition number κη(M) = σ1(M)/ση(M).

To prove Theorem 1, in the first step, we show the correctness of the upper bound stated in

(24) based on the following Theorems 2 and 3. In the second step, conditions (26) and (27) are

shown to hold along with the (µ1, µ2)-incoherence property.

Theorem 2. There exists a constant C′′1 , such that with probability greater than 1 − N−3,

‖ΨE(Ms)‖2 ≤ C′′1 a2 log2 N . (28)

The proof of this theorem is explained in Appendix .1.
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Theorem 3. There exists a constant C′′2 (ς), such that with probability greater than 1 − N−3,

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ C′′2 (ς)

d4
max

a2 p N . (29)

The proof of this theorem is explained in Appendix .2.

On the other hand, the following condition holds for any arbitrary network of micro-

phones [23]

dist(X, X̂) ≤
1
N
||M − M̂||F . (30)

Therefore, based on Theorem 2, Theorem 3 and the relations (25) and (30), the upper bound

stated in (24) is correct where C1 = C′1C′′1 and C2(ς) = C′2C′′2 (ς); it is enough to investigate

conditions (26) and (27) and (µ1, µ2)-incoherency of M to prove Theorem 1.

To show the inequality stated in (26), we can equivalently show that

N p ≥ C′1µ
2κ6
η(M) log N , (31)

where µ = max(µ1, µ2). In order to show that (31) holds with high probability for N ≥ C log N/p

and some constant C, we show that κη(M) and µ are bounded with high probability independent

of N.

The squared distance between xi and x j ∈ Rζ is given by

Mi j = ρ2
i + ρ2

j − 2xT
i x j , (32)

where ρi is the distance of microphone i from the center of the table. The squared distance matrix

can be expressed as

M = ASAT , (33)

16



where for a planar deployment of microphones, i.e., ζ = 2, η = 4, and xT
i = [xi, yi] ∈ R2, we

have

A =


a/2 x1 y1 −a2/4 + ρ2

1
...

...
...

...

a/2 xN yN −a2/4 + ρ2
N

 ,
and

S =



2 0 0 2/a

0 −2 0 0

0 0 −2 0

2/a 0 0 0


.

Since S is nondefective, using eigendecomposition, there is a non-singular matrixW and diag-

onal matrix Γ such that

S =WΓW−1 , (34)

where

Γ = diag

−2,−2,
a +
√

4 + a2

a
,

a −
√

4 + a2

a

 .
The largest and smallest singular values of S are σ1(S) = a+

√
4+a2

a and σ4(S) = min
(
2,
√

4+a2−a
a

)
respectively. Based on (33), we have

σ1(M) ≤ σ1(S)σ1(AAT ) , (35)

σ4(M) ≥ σ4(S)σ4(AAT ) . (36)

Therefore, to bound κ4(M) = σ1(M)/σ4(M), we need to derive the bound for σ1(AAT ) and

σ4(AAT ). Assuming a uniform distribution of the microphones on the circular table, we have

the following distribution for ρ

Pρ(ρ) =
2ρ
a2 for 0 ≤ ρ ≤ a . (37)
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Therefore, the expectation of the matrix AT A is

E[AT A] =



Na2/4 0 0 Na3/4

0 Na4/4 0 0

0 0 Na4/4 0

Na3/8 0 0 7Na4/48


. (38)

Hence, the largest and smallest singular values of E[AT A] are Nσmax(a) and

Nσmin(a) respectively with σmax(a) and σmin(a) independent of N. Moreover, σi(·) is a

Lipschitz continuous function of its arguments and based on the Chernoff bound [24], we get

P(σ1(AAT ) > 2Nσmax(a)) ≤ e−C
′N , (39)

P(σ1(AAT ) < (1/2)Nσmax(a)) ≤ e−C
′N , (40)

P(σ4(AAT ) < (1/2)Nσmin(a)) ≤ e−C
′N , (41)

for a constant C′. Hence, with high probability, based on relations (35), (36), (39) and (41), we

have

κ4(M) ≤
4σmax(a)σ1(S)
σmin(a)σ4(S)

= fκ4 (a) . (42)

This bound is independent of N.

In the next step, we have to bound µ1 and µ2. The rank of matrix A is η, therefore there

are matrices B ∈ Rη×η and V ∈ RN×η such that A = VBT and VT V = NI. Given M = UΣUT

and (33), we have Σ = QT BTSBQ and U = VQ for an orthogonal matrix Q. To show the

incoherence propertyA1, we show that

‖Vi.‖
2 ≤ η µ1 ∀ i ∈ [N] , (43)

18



where Vi. denotes the transpose of ith row of the corresponding matrix. For η = 4, since Vi. =

B−1 Ai., we have ‖Vi.‖
2 ≤ σ4(B)−2‖Ai.‖

2 and σ4(A) =
√

N σ4(B), therefore

‖Vi.‖
2 ≤ σ4(A)−2‖Ai.‖

2 N . (44)

Moreover, ‖Ai.‖
2 = a2/4 + ρ2

i + (−a2/4 + ρ2
i )2 ≤ 5a2/4 + 9a4/16. Defining

fµ1 (a) =
5a2/2 + 9a4/8

σmin(a)
, (45)

and based on (41) and (44), with high probability we have

‖Ui.‖
2 ≤ fµ1 (a) ∀ i ∈ [N] . (46)

Therefore, the incoherence propertyA1 for µ1 = fµ1 (a)/η is correct; that is independent of N.

To prove the incoherence property A2, it is enough to prove that
∣∣∣Mi j/σ1(M)

∣∣∣ ≤ √η µ2/N

for all i, j ∈ [N]. The maximum value of Mi j is 4a2 and based on (36) and (41) we have

σ1(M) ≥
1
2

N σmin(a)σ4(S) , (47)

Defining fµ2 (a) = 8a2/σmin(a)σ4(S), we have

∣∣∣Mi j/σ1(M)
∣∣∣ ≤ fµ2 (a)

N
∀ i, j ∈ [N] . (48)

Therefore, the incoherence property A2 for µ2 = fµ2 (a)/
√
η is correct; that is independent of N.

Since κ4(M), µ1 and µ2 are bounded independent of N, matrix M is (µ1, µ2)-incoherent and the

inequalities (26) and (31) are correct.

Further, (27) holds with high probability, if the right-hand side of (24) is less than

C3 σmin(a)σ4(S), since based on (41), ση(M)
N ≥ 1

2σmin(a)σ4(S). This finishes the proof of Theo-

rem 1.

�
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The theoretical error bounds of ad hoc microphone calibration established above corresponds

to the classic matrix completion algorithm. We will extend the mathematical results to the com-

pletion of Euclidean distance matrices incorporating the Cadzow and EDM projections through

the experiments. As we will see in Section 7, this bound is not tight for the Cadzow projection

and the Euclidean distance matrix completion algorithm as we achieve better results than matrix

completion for microphone array calibration.

6. Related Methods

The objective is to extract the position of N microphones denoted as xi, i ∈ {1, . . . ,N} up to a

rigid transformation. Some of the state-of-the-art methods to achieve this goal are (1) Multi-

Dimensional Scaling (MDS) [25], (2) Semi-Definite Programming (SDP) [26] and S-Stress

(SS) [19] discussed briefly in the following sections. We refer the reader to the references for

further details.

6.1. Classic Multi-Dimensional Scaling Algorithm

MDS refers to a set of statistical techniques used in finding the configuration of objects in

a low dimensional space such that the measured pairwise distances are preserved [27]. Given

a distance matrix, finding the relative microphone positions is achieved by MDSLocalize [19].

In the ideal case where matrix M is complete and noiseless, this algorithm outputs the relative

positions of the microphones in the desired dimension through the steps summarized as follows

� Double centering M via Ξ(M) = −1
2 J M J.

� Eigenvalue decomposition of Ξ(M) as UΠUT .

� Extracting the ζ largest eigenvalues and the corresponding eigenvectors denoted by Π+

and U+.

� The microphone positions are obtained as X = U+Π+.

In a real scenario of missing distances, a modification called MDS-MAP [25] computes the

shortest paths between all pairs of nodes in the region of consideration. The shortest path between
20



microphones i and j is defined as the path between two nodes such that the sum of the estimated

distance measures of its constituent edges is minimized. By approximating the missing distances

with the shortest path and constructing the distance matrix, classical MDS is applied to estimate

the microphone array geometry.

6.2. Semidefinite Programming

Another efficient method that can be used for calibration is the semidefinite programming

approach formulated as

X̂ = arg min
X

∑
(i, j)∈E

wi j

∣∣∣∣∥∥∥xi − x j

∥∥∥2
− d̃2

i j

∣∣∣∣ , (49)

where wi j shows the reliability measure on the estimated pairwise distances. The basis vectors

in Euclidean space RN are denoted by {u1, u2, · · · , uN}. The optimization expressed in equation

(49) is not convex but can be relaxed as a convex minimization via

min
X,Y

∑
(i, j)∈E

wi j

∣∣∣(ui − u j)T [Y, X; XT , Iζ](ui − u j)T − d̃2
i j

∣∣∣
subject to [Y, X; XT , Iζ] � 0,

∥∥∥XT 1N

∥∥∥ = 0

(50)

where YN×N is a positive semidefinite matrix and � is a generalized matrix inequality on the

positive semidefinite cone [28]. To further increase the accuracy, a gradient decent is applied on

the output of SDP minimization [26].

6.3. Algebraic S-Stress Method

The s-stress method for calibration extracts the topology of the ad hoc network by optimizing

the cost function stated as

X̂ = arg min
X

∑
(i, j)∈E

wi j

(∥∥∥xi − x j

∥∥∥2
− d̃2

i j

)2
. (51)

The reliability measure wi j controls the least square regression stated in equation (51) which can

be set according to the measure of d̃i j. If wi j = d̃−2
i j , we have elastic scaling that gives importance
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to large and small distances. If wi j = 1, large distances are given more importance than the small

distances. In general, incorporation of wi j = d̃αi j, α ∈ {...,−2,−1, 0, 1, 2, ...} yields different loss

functions and depending on the structure of the problem, one of them may work better than the

other [29].

7. Experimental Analysis

7.1. A-priori Expectations

The simplest method that we discussed is the classical MDS algorithm. This method assumes

that all the pairwise distances are known and in the case of missing entries and noise, it does

not minimize a meaningful utility function. An extension of this method is MDS-MAP which

replaces the missing distances with the shortest path. In many scenarios, this is considered as a

coarse approximation of the true distances.

The SDP-based method on the other hand performs fairly well with missing distance infor-

mation. Together with its final gradient descent phase, it can find good estimates of the location.

However, since each distance information translates into a constraint in the semi-definite pro-

gram, this approach is not scalable and becomes intractable for large sensor networks.

The alternative approach is to minimize the non-convex s-stress function. Although perform-

ing well in many cases, in the case of missing distances, one cannot eliminate the possibility of

falling into local minima using this approach.

The approach that we proposed in this paper exploits matrix completion algorithm to recover

the missing distances considering the low-rank as well as Euclidean properties of the distance

matrix. The classic matrix completion does not take into account the EDM properties. By inte-

grating the Cadzow projection, the estimated matrix have partial EDM properties, and hence we

expect better reconstruction results. Further, by incorporating the full EDM structure, we achieve

a Euclidean distance matrix completion algorithm and expect more fidelity in the reconstruction

results.

In this section, we present the evaluation results of the microphone calibration methods using

real data recordings collected at Idiap’s instrumented meeting room.
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7.2. Recording Set-up

We consider a scenario in which eleven microphones are located on a planar area: Eight of

them are located on a circle with diameter 20cm and one microphone is at the center. There are

two additional microphones with 70cm distance from the central microphone. The microphones

are Sennheiser MKE-2-5-C omnidirectional miniature lapel microphones.

The floor of the room is covered with carpet and surrounded with plaster walls having two big

windows. The enclosure is a 8 × 5.5 × 3.5 m3 rectangular room and it is moderately reverberant.

It contains a centrally located 4.8 × 1.2 m2 rectangular table. This scenario mimics the MONC

database [30]. The sampling rate is 48k while the processing applied for microphone calibration

is based on down-sampled signal of rate 16k to reduce the computational cost of pairwise distance

estimation.

7.3. Pairwise Distance Estimation

In order to estimate the pairwise distances, we take two microphone signals of length 2.14 s

and frame them into short windows of length 1024 samples using a Tukey function (parameter

= 0.25) and apply Fourier transform. For each frame, we compute the coherence function. The

average of the coherence functions over 1000 frames are computed and used for estimation of

the pairwise distance by fitting a sinc function as stated in (1) using the algorithm described

in [16]. This algorithm is an improved version of the distance estimation using diffuse noise

coherence model which enables a reasonable estimate up to 73 cm. We empirically confirm that

the distances beyond that are not reliably estimated so they are regarded as missing. Thereby, the

following entries of the Euclidean distance matrix are missing, d10,11, d1,10, d7,10, d8,10, d5,11, d6,11,

d7,11 (see Figure 5).

7.4. Geometry Estimation

In the scenario described above, microphone calibration is achieved in two steps. First, all

methods are used to find the nine close microphones in order to evaluate them for geometry

estimation when we have all distances. The geometry of these microphones are fixed and used
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to calibrate the rest of the network. Figure 3 demonstrates the results of MDS-MAP, SDP, s-

stress and the proposed Euclidean distance matrix completion algorithm. The calibration error

is quantified based on (12). The best results are achieved by the proposed algorithm with error

5.85. The second place belongs to s-stress with error 6.1 followed by MDS-MAP and SDP with

errors 8.13 and 8.63 respectively. Figure 4 provides a comparative illustration of the results of
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Figure 3: Calibration of the nine-element microphone array. The geometries are estimated using
MDS, S-stress, SDP and the proposed method.

matrix completion (MC), MC+Cadzow and the proposed Euclidean distance matrix completion

algorithm. We can see that MC+Cadzow yields better result with error 7.68 compared to MDS-

MAP, but worse than s-stress. Table 2 summarizes all the results.
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Figure 4: Calibration of the nine-element microphone array. The geometries are estimated using
MC, MC+Cadzow and the proposed method.

Methods Errors

MDS 8.13

SDP 8.63

S-stress 6.1

Matrix completion 9.75

Matrix completion+Cadzow 7.68

Proposed method 5.85

Table 2: Performance comparison of different methods for calibration of the nine-element mi-
crophone array. The error is quantified based on (12).25



The scenario using eleven channels of microphones addresses the problem of having partial

distance estimation for calibration of an ad hoc microphone array. The experiments show that

the proposed method offers the best estimation of the geometry as illustrated in Figure 5 and 6

with error 49.6. As we can see, the proposed Euclidean distance matrix completion algorithm

achieves more than twice less error than the best state-of-the-art alternative.
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Figure 5: Calibration of the eleven-element microphone array while several pairwise distances
are missing. The geometries are estimated using MDS-MAP, SDP, S-stress and the proposed
method.

The worst result belongs to MDS-MAP with error 438 because the shortest path is a poor

estimation of missing entries. The s-stress and SDP search the Euclidean space corresponding to

the feasible positions hence, their performance are more reasonable with errors 141 and 125. The

advantage of being constrained to a physically possible search space or close to it is considered in

extensions of matrix completion in MC+Cadzow and the proposed method and achieves the best

performance. The results are summarized in Table 3. These experimental evaluations confirm

the effectiveness of the proposed algorithm and demonstrate the hypothesis that incorporating

the EDM properties in matrix completion algorithm enables calibration of ad hoc microphone

arrays from partial measurements of the pairwise distances.
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Figure 6: Calibration of the eleven-element microphone array while several pairwise distances
are missing. The geometries are estimated using MC, MC+Cadzow, and the proposed method.

Methods Errors
MDS-MAP 438
SDP 141
S-stress 125
Matrix completion 133
Matrix completion+Cadzow 119
Proposed method 49.6

Table 3: Performance comparison of different methods for calibration of the eleven-element
microphone array while several pairwise distances are missing. The error is quantified based
on (12).

8. Conclusions

We proposed a Euclidean distance matrix completion algorithm for calibration of ad hoc mi-

crophone arrays from partially known pairwise distances. This approach exploits the low-rank

property of the distance matrix and recovers the missing entries based on a matrix completion op-

timization scheme. To incorporate for the properties of a Euclidean distance matrix, the estimated

matrix at each iteration of the matrix completion is projected onto the EDM cone. Furthermore,

we derived the theoretical bounds on the calibration error using matrix completion algorithm.

The experimental evaluations conducted on real data recordings demonstrate that the proposed
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method outperforms the state-of-the-art techniques for ad hoc array calibration in particular in the

scenarios of missing distances. This study confirmed that exploiting the combination of the rank

condition of EDMs, similarity in the measured distances, and iterative projection on the EDM

cone leads to the best position reconstruction results. The proposed algorithm and the theoretical

guarantees are applicable to the general framework of ad hoc sensor networks calibration.

Appendix .1. Proof of Theorem 2

The goal is to find the bound of the norm of the squared distance matrix with missing entries

according to structures indicated by E and S . Based on (6) and (9), we define matrix E as

Ei j =


1 if (i, j) ∈ E ∩ S

0 otherwise

Both E and S are symmetric matrices, hence E is also symmetric. Due to the physical setup, we

know that ΨE(M)i j ≤ 4a2 for all i, j ∈ [N] and from the norm definition we have

‖ΨE(Ms)‖2 ≤ 4a2 max
‖h‖=‖~~~‖=1

∑
i, j

|hi| |~ j| Ei j = 4a2‖E‖2 ,

where h = [h1, h2, ..., hN]T and ~~~ = [~1, ~2, ..., ~N]T are right and left eigenvectors of matrix E. In

order to bound ‖E‖2, we first define a binomial random variable vector ν = [ν1, ν2, ..., νN]T where

νi =
∑
j∈[N]

|Ei j| . (.1)

Based on the Gershgorin circle theorem we have ‖E‖2 ≤ ‖ν‖∞. Each entry in matrix E is one

with probability p q where q is the probability that the entry is included in structured missing

entries or

q = P{|xi − x j| ≥ dmax} .

Hence, we have

E[νi] = N pq , (.2)
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Figure .7: Scenario corresponding to the (I) lower bound and (II) upper bound of the probability
q of structured missing distances.

For bounding E[νi], it is necessary to bound q. Figure .7.I depicts the lowest probability of

missing distances if the microphone location with respect to the edge of the circular table has

a distance more than dmax and Figure .7.II depicts the highest probability if the microphone is

located right at the edge of the table. The maximum of dmax is a. We denote the upper bound and

lower bound with qmax(a, dmax) and qmin(a, dmax) respectively, therefore

qmin(a, dmax) ≤ q ≤ qmax(a, dmax) . (.3)

As illustrated in Figure .7. qmin(a, dmax) = max{1 −
( dmax

a
)2
, 0} and qmax(a, dmax) = 1 − B

πa2 where

B is the intersection area between the two circles. By computing B, we obtain

qmax = 1 −
2γ
π

+
1

2π
sin 4γ +

2ξ2

π
[2γ + sin 2γ] − 2ξ2 , (.4)
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where ξ = dmax/2a and γ = sin−1 ξ. Based on (.2) and (.3) we have

N pqmin(a, dmax) ≤ E[νi] ≤ N pqmax(a, dmax) . (.5)

By applying the Chernoff bound to νi we have

P
(
νi > (1 + ε)E[νi]

)
≤ 2−(1+ε)E[νi] ,

where ε is an arbitrary positive constant. Therefore, based on (.5) we have

P
(
νi > (1 + ε)N p qmax

)
≤ 2−(1+ε)N p qmin . (.6)

By applying the union bound we have

P
(

max
i∈[N]

νi > (1 + ε)N p qmax
)
≤ 2−(1+ε)N p qmin+log2 N . (.7)

We assume that qmin and qmax grow as O( log2 N
N ); this assumption indicates that the ratio of the

structured missing entries with respect to N decreases as N grows or in other words, dmax in-

creases as the size of the network N grows. Therefore, we have

P
(

max
i∈[N]

νi > (1 + ε)N p qmax
)
≤ N−θ , (.8)

where the positive parameter θ = (1 + ε)p − 1; by choosing ε ≥ 4/p − 1, with probability greater

than 1 − N−3, we have

‖ΨE(Ms)‖2 ≤ 4a2 max
i∈[N]

νi ,

and based on (.8)

‖ΨE(Ms)‖2 ≤ 4a2(1 + θ)qmaxN .

Therefore, we achieve

‖ΨE(Ms)‖2 ≤ C′′1 a2 log2 N .
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Appendix .2. Proof of Theorem 3

Based on the noise model described in Section 3.3, the maximum entry of the matrix Z s̄
i j is

obtained as

max Z s̄
i j = max

i, j
d2

i jΥi j

(
2 + Υi j

)
, (.9)

where di j ≤ dmax and based on (11), the value of |Υi j|
(
2 + |Υi j|

)
with probability greater than

1 − N−3 is less than 16 ς + 64 ς2 for a typical network of less than N < 104 microphones.

Assuming a uniform distribution of the microphones, Z s̄ has N (dmax/a)2 non zero entries. Based

on the Gershgorin circle theorem [31] we have

∥∥∥Z s̄
∥∥∥ ≤ max

i

∑
j

|Z s̄
i j| . (.10)

By applying ΨE projection, with C′′2 (ς) = 16 ς + 64 ς2 2 we have

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ C′′2 (ς)

d4
max

a2 p N .
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