2,374 research outputs found

    Isospin breaking in pion-nucleon scattering at threshold by radiative processes

    Full text link
    We investigate the dispersive contribution by radiative processes such as (pi- proton to neutron gamma) and (pi- proton to Delta gamma) to the pion-nucleon scattering lengths of charged pions in the heavy baryon limit. They give a large isospin violating contribution in the corresponding isoscalar scattering length, but only a small violation in the isovector one. These terms contribute 6.3(3)% to the 1s level shift of pionic hydrogen and give a chiral constant F_pi^2f_1=-25.8(8) MeV.Comment: 9 pages with 1 figur

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Electron-neutrino scattering off nuclei from two different theoretical perspectives

    Get PDF
    We analyze charged-current electron-neutrino cross sections on Carbon. We consider two different theoretical approaches, on one hand the Continuum Random Phase Approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach we compare the sum of quasielastic, multinucleon emission, coherent and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on Carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections

    The Pion-Nucleon coupling constant from np charge exchange scattering

    Full text link
    A novel extrapolation method has been used to deduce the charged Pion-Nucleon coupling constant from backward npnp differential scattering cross sections. We applied it to new measurements performed at 162 MeV at the The Svedberg Laboratory in Uppsala. In the angular range 150180150^\circ-180^\circ, the carefully normalized data are steeper than those of most previous measurements. The extracted value, gπ±2=14.52±0.26g^2_{\pi^\pm} = 14.52 \pm 0.26, in good agreement with the classical value, is higher than those determined in recent nucleon-nucleon partial-wave analyses.Comment: 6 pages, 3 encapsulated figures, epsfig, menu97.cls (included

    Quark Condensate in the Deuteron

    Get PDF
    We study the changes produced by the deuteron on the QCD quark condensate by means the Feynman-Hellmann theorem and find that the pion mass dependence of the pion-nucleon coupling could play an important role. We also discuss the relation between the many body effect of the condensate and the meson exchange currents, as seen by photons and pions. For pion probes, the many-body term in the physical amplitude differs significantly from that of soft pions, the one linked to the condensate. Thus no information about the many-body term of the condensate can be extracted from the pion-deuteron scattering length. On the other hand, in the Compton amplitude, the relationship with the condensate is a more direct one.Comment: to appear in Physics Review C (19 pages, 3 figures

    Energy level displacement of excited np states of kaonic hydrogen

    Full text link
    We compute the energy level displacement of the excited np states of kaonic hydrogen within the quantum field theoretic and relativistic covariant model of strong low-energy bar-KN interactions suggested in EPJA21, 11 (2004). For the width of the energy level of the excited 2p state of kaonic hydrogen, caused by strong low-energy interactions, we find Gamma_2p = 2 meV. This result is important for the theoretical analysis of the X-ray yields in kaonic hydrogen.Comment: 20 pages, no figures, Latex, new references are adde

    Chiral π\pi-exchange NN-potentials: Results for diagrams proportional to g_A^4 and g_A^6

    Full text link
    We calculate in (two-loop) chiral perturbation theory the local NN-potentials generated by the three-pion exchange diagrams proportional to g_A^4 and g_A^6. Surprisingly, we find that the total isoscalar central 3π3\pi-exchange potential vanishes identically. The individually largest 3π3\pi-exchange potentials are of isoscalar spin-spin, isovector central and isoscalar tensor type. For these potentials simple analytical expressions can be given. The strength of these dominant 3π3\pi-exchange potentials at r=1.0 fm is 4.6 MeV, 2.9 MeV and 1.4 MeV, respectively. Furthermore, we observe that the spin-spin and tensor potentials due to the diagrams proportional to g_A^6 do not exist in the infinite nucleon mass limit.Comment: 8 pages, 5 figure

    Effect of Dose on Serum Pharmacokinetics of Intravenous Ciprofloxacin with Identification and Characterization of Extravascular Compartments Using Noncompartmental and Compartmental Pharmacokinetic Models

    Get PDF
    The effect of dose on the pharmacokinetics of ciprofloxacin in serum and urine following single intravenous doses of 100, 150, and 200 mg was studied in nine healthy volunteers. Mean peak levels in serum were 1.4, 2.0, and 3.2 mg/liter for the 100-, 150-, and 200-mg doses, respectively. The data on concentrations in serum were best described by a three-compartment pharmacokinetic model. The terminal half-life (from noncompartmental analysis) averaged between 4.2 and 4.6 h. Average urinary recovery ranged between 45.8 and 48.1%. The average renal clearance of ciprofloxacin was 2.9- to 3.4-fold greater than the measured creatinine clearance. Total serum and renal clearances decreased with increasing dose; however, this was not statistically significant (P \u3e 0.05; repeated-measures analysis of variance). Ciprofloxacin was well tolerated by all subjects. In this dose range, ciprofloxacin pharmacokinetics are independent of dose

    Electromagnetic Polarisability of the Nucleon in Chiral Perturbation Theory

    Full text link
    We compute the polarisability of the nucleon to leading order in chiral perturbation theory. The contributions from kaons and baryon resonances as intermediate states are included in addition to the contribution from pions and nucleons that had been previously computed. The isoscalar operators are dominated by the infrared behaviour of pion loops giving rise to a 1/mπ1/m_{\pi} coefficient. In contrast, the isovector operators are dominated by loops involving kaons, giving a 1/mk1/m_{k} coefficient, and further demonstrates that the strange quark is an important component of the nucleon. In addition, the inclusion of the decuplet of baryon resonances as intermediate states substantially modifies the result found from the octet baryons alone for the isoscalar polarisability.Comment: 11 pages (uses harvmac, figures available upon request) , UCSD/PTH 92-30, QUSTH-92-0
    corecore