303 research outputs found

    On infrared divergences in spin glasses

    Full text link
    By studying the structure of infrared divergences in a toy propagator in the replica approach to the Ising spin glass below TcT_c, we suggest a possible cancellation mechanism which could decrease the degree of singularity in the loop expansion.Comment: 13 pages, Latex , revised versio

    Recursive Graphical Construction of Feynman Diagrams in phi^4 Theory: Asymmetric Case and Effective Energy

    Get PDF
    The free energy of a multi-component scalar field theory is considered as a functional W[G,J] of the free correlation function G and an external current J. It obeys non-linear functional differential equations which are turned into recursion relations for the connected Greens functions in a loop expansion. These relations amount to a simple proof that W[G,J] generates only connected graphs and can be used to find all such graphs with their combinatoric weights. A Legendre transformation with respect to the external current converts the functional differential equations for the free energy into those for the effective energy Gamma[G,Phi], which is considered as a functional of the free correlation function G and the field expectation Phi. These equations are turned into recursion relations for the one-particle irreducible Greens functions. These relations amount to a simple proof that Gamma[G,J] generates only one-particle irreducible graphs and can be used to find all such graphs with their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of classes of graphs. Examples are given for resumming one-loop and multi-loop tadpoles, both through all orders of perturbation theory. Since the functional differential equations derived are non-perturbative, they constitute also a convenient starting point for other expansions than those in numbers of loops or powers of coupling constants. We work with general interactions through four powers in the field.Comment: 34 pages; abstract expanded; section IV.E about absorption of tadpoles and one related reference added; eqs. (20) and (23) corrected; further references added; some minor beautifications; to be published by Phys.Rev.

    MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations

    Get PDF
    Abstract. In this paper we use MEDSLIK-II, a Lagrangian marine surface oil spill model described in Part 1 (De Dominicis et al., 2013), to simulate oil slick transport and transformation processes for realistic oceanic cases, where satellite or drifting buoys data are available for verification. The model is coupled with operational oceanographic currents, atmospheric analyses winds and remote sensing data for initialization. The sensitivity of the oil spill simulations to several model parameterizations is analyzed and the results are validated using surface drifters, SAR (synthetic aperture radar) and optical satellite images in different regions of the Mediterranean Sea. It is found that the forecast skill of Lagrangian trajectories largely depends on the accuracy of the Eulerian ocean currents: the operational models give useful estimates of currents, but high-frequency (hourly) and high-spatial resolution is required, and the Stokes drift velocity has to be added, especially in coastal areas. From a numerical point of view, it is found that a realistic oil concentration reconstruction is obtained using an oil tracer grid resolution of about 100 m, with at least 100 000 Lagrangian particles. Moreover, sensitivity experiments to uncertain model parameters show that the knowledge of oil type and slick thickness are, among all the others, key model parameters affecting the simulation results. Considering acceptable for the simulated trajectories a maximum spatial error of the order of three times the horizontal resolution of the Eulerian ocean currents, the predictability skill for particle trajectories is from 1 to 2.5 days depending on the specific current regime. This suggests that re-initialization of the simulations is required every day

    Eddy diffusivity derived from drifter data for dispersion model applications

    Get PDF
    Ocean transport and dispersion processes are at the present time simulated using Lagrangian stochastic models coupled with Eulerian circulation models that are supplying analyses and forecasts of the ocean currents at unprecedented time and space resolution. Using the Lagrangian approach, each particle displacement is described by an average motion and a fluctuating part. The first one represents the advection associated with the Eulerian current field of the circulation models while the second one describes the sub-grid scale diffusion. The focus of this study is to quantify the sub-grid scale diffusion of the Lagrangian models written in terms of a horizontal eddy diffusivity. Using a large database of drifters released in different regions of the Mediterranean Sea, the Lagrangian sub-grid scale diffusion has been computed, by considering different regimes when averaging statistical quantities. In addition, the real drifters have been simulated using a trajectory model forced by OGCM currents, focusing on how the Lagrangian properties are reproduced by the simulated trajectories

    Absence of an equilibrium ferromagnetic spin glass phase in three dimensions

    Full text link
    Using ground state computations, we study the transition from a spin glass to a ferromagnet in 3-d spin glasses when changing the mean value of the spin-spin interaction. We find good evidence for replica symmetry breaking up till the critical value where ferromagnetic ordering sets in, and no ferromagnetic spin glass phase. This phase diagram is in conflict with the droplet/scaling and mean field theories of spin glasses. We also find that the exponents of the second order ferromagnetic transition do not depend on the microscopic Hamiltonian, suggesting universality of this transition.Comment: 4 pages, 5 figures, revte

    Oil spill forecasting in the Mediterranean Sea

    Get PDF
    In this work sensitivity experiments to the coupled MFS (currents) and MEDSLIK (oil spill) input parameters will be shown and results will be compared with observations. In these experiments the drift angle, the drift factor, the currents depth, the type of oil, horizontal diffusivity and the horizontal and temporal current resolution were changed

    Theory of disordered flux-line liquids

    Full text link
    We study the equilibrium statics and nonequilibrium driven dynamics of flux line liquids in presence of a random pinning potential. Under the assumption of replica symmetry, we find in the static case using a replica Gaussian variational method that the only effect of disorder is to increase the tilt modulus and the confining "mass" of the internal modes of the flux lines, thus decreasing their thermal wandering. In the nonequilibrium, driven case, we derive the long scale, coarse-grained equation of motion of the vortices in presence of disorder, which apart from new Kardar-Parisi-Zhang nonlinearities, has the same form as the equation of motion for unpinned vortices, with renormalized coefficients. This implies, in particular, that the structure factor of a disordered vortex liquid has the same functional form as in the absence of pinning, in disagreement with the results of previous hydrodynamic methods. The expression of the static structure factor derived within our approach is consistent both with experimental data and with the standard theory of elasticity of vortex lattices.Comment: 27 pages, 1 figure; added a new Appendix; accepted for publication in Phys. Rev.

    Parquet approach to nonlocal vertex functions and electrical conductivity of disordered electrons

    Full text link
    A diagrammatic technique for two-particle vertex functions is used to describe systematically the influence of spatial quantum coherence and backscattering effects on transport properties of noninteracting electrons in a random potential. In analogy with many-body theory we construct parquet equations for topologically distinct {\em nonlocal} irreducible vertex functions into which the {\em local} one-particle propagator and two-particle vertex of the coherent-potential approximation (CPA) enter as input. To complete the two-particle parquet equations we use an integral form of the Ward identity and determine the one-particle self-energy from the known irreducible vertex. In this way a conserving approximation with (Herglotz) analytic averaged Green functions is obtained. We use the limit of high spatial dimensions to demonstrate how nonlocal corrections to the d=∞d=\infty (CPA) solution emerge. The general parquet construction is applied to the calculation of vertex corrections to the electrical conductivity. With the aid of the high-dimensional asymptotics of the nonlocal irreducible vertex in the electron-hole scattering channel we derive a mean-field approximation for the conductivity with vertex corrections. The impact of vertex corrections onto the electronic transport is assessed quantitatively within the proposed mean-field description on a binary alloy.Comment: REVTeX 19 pages, 9 EPS diagrams, 6 PS figure

    Static chaos and scaling behaviour in the spin-glass phase

    Full text link
    We discuss the problem of static chaos in spin glasses. In the case of magnetic field perturbations, we propose a scaling theory for the spin-glass phase. Using the mean-field approach we argue that some pure states are suppressed by the magnetic field and their free energy cost is determined by the finite-temperature fixed point exponents. In this framework, numerical results suggest that mean-field chaos exponents are probably exact in finite dimensions. If we use the droplet approach, numerical results suggest that the zero-temperature fixed point exponent θ\theta is very close to d−32\frac{d-3}{2}. In both approaches d=3d=3 is the lower critical dimension in agreement with recent numerical simulations.Comment: 28 pages + 6 figures, LateX, figures uuencoded at the end of fil

    Equilibrium and off-equilibrium simulations of the 4d Gaussian spin glass

    Full text link
    In this paper we study the on and off-equilibrium properties of the four dimensional Gaussian spin glass. In the static case we determine with more precision that in previous simulations both the critical temperature as well as the critical exponents. In the off-equilibrium case we settle the general form of the autocorrelation function, and show that is possible to obtain dynamically, for the first time, a value for the order parameter.Comment: 16 pages and 13 figures, uses epsfig.sty and rotate.sty. Some minor grammatical changes. Also available at http://chimera.roma1.infn.it/index_papers_complex.htm
    • …
    corecore