3,508 research outputs found
Atmospheric Dynamics of Short-period Extra Solar Gas Giant Planets I: Dependence of Night-Side Temperature on Opacity
More than two dozen short-period Jupiter-mass gas giant planets have been
discovered around nearby solar-type stars in recent years, several of which
undergo transits, making them ideal for the detection and characterization of
their atmospheres. Here we adopt a three-dimensional radiative hydrodynamical
numerical scheme to simulate atmospheric circulation on close-in gas giant
planets. In contrast to the conventional GCM and shallow water algorithms, this
method does not assume quasi hydrostatic equilibrium and it approximates
radiation transfer from optically thin to thick regions with flux-limited
diffusion. In the first paper of this series, we consider
synchronously-spinning gas giants. We show that a full three-dimensional
treatment, coupled with rotationally modified flows and an accurate treatment
of radiation, yields a clear temperature transition at the terminator. Based on
a series of numerical simulations with varying opacities, we show that the
night-side temperature is a strong indicator of the opacity of the planetary
atmosphere. Planetary atmospheres that maintain large, interstellar opacities
will exhibit large day-night temperature differences, while planets with
reduced atmospheric opacities due to extensive grain growth and sedimentation
will exhibit much more uniform temperatures throughout their photosphere's. In
addition to numerical results, we present a four-zone analytic approximation to
explain this dependence.Comment: 35 Pages, 13 Figure
Radiative Hydrodynamic Simulations of HD209458b: Temporal Variability
We present a new approach for simulating the atmospheric dynamics of the
close-in giant planet HD209458b that allows for the decoupling of radiative and
thermal energies, direct stellar heating of the interior, and the solution of
the full 3D Navier Stokes equations. Simulations reveal two distinct
temperature inversions (increasing temperature with decreasing pressure) at the
sub-stellar point due to the combined effects of opacity and dynamical flow
structure and exhibit instabilities leading to changing velocities and
temperatures on the nightside for a range of viscosities. Imposed on the
quasi-static background, temperature variations of up to 15% are seen near the
terminators and the location of the coldest spot is seen to vary by more than
20 degrees, occasionally appearing west of the anti-solar point. Our new
approach introduces four major improvements to our previous methods including
simultaneously solving both the thermal energy and radiative equations in both
the optical and infrared, incorporating updated opacities, including a more
accurate treatment of stellar energy deposition that incorporates the opacity
relevant for higher energy stellar photons, and the addition of explicit
turbulent viscosity.Comment: Accepted for publication in Ap
Simulating the impact of the Smith Cloud
We investigate the future evolution of the Smith Cloud by performing
hydrodynamical simulations of the cloud impact onto the gaseous Milky Way
Galactic disk. We assume a local origin for the cloud and thus do not include a
dark matter component to stabilize it. Our main focus is the cloud's influence
on the local and global star formation rate (SFR) of the Galaxy and whether or
not it leads to an observable event in the far future. Our model assumes two
extremes for the mass of the Smith Cloud, an upper mass limit of 10
M and a lower mass limit of 10 M, compared to the
observational value of a few 10 M. In addition, we also make the
conservative assumption that the entirety of the cloud mass of the extended
Smith Cloud is concentrated within the tip of the cloud. We find that the
impact of the low-mass cloud produces no noticeable change in neither the
global SFR nor the local SFR at the cloud impact site within the galactic disk.
For the high-mass cloud we find a short-term (roughly 5 Myr) increase of the
global SFR of up to 1 M yr, which nearly doubles the normal
Milky Way SFR. This highly localized starburst should be observable.Comment: 14 pages, 5 figure
Some closure operations in Zariski-Riemann spaces of valuation domains: a survey
In this survey we present several results concerning various topologies that
were introduced in recent years on spaces of valuation domains
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
Transient thermal effects in solid noble gases as materials for the detection of Dark Matter
The transient phenomena produced in solid noble gases by the stopping of the
recoils resulting from the elastic scattering processes of WIMPs from the
galactic halo were modelled, as dependencies of the temperatures of lattice and
electronic subsystems on the distance to the recoil's trajectory, and time from
its passage. The peculiarities of these thermal transients produced in Ar, Kr
and Xe were analysed for different initial temperatures and WIMP energies, and
were correlated with the characteristics of the targets and with the energy
loss of the recoils. The results were compared with the thermal spikes produced
by the same WIMPs in Si and Ge. In the range of the energy of interest, up to
tens of keV for the self-recoil, local phase transitions solid - liquid and
even liquid - gas were found possible, and the threshold parameters were
established.Comment: Minor corrections and updated references; accepted to JCA
Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits
Of the over 800 exoplanets detected to date, over half are on non-circular
orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable
stellar heating, which has implications for the planet's atmospheric dynamical
regime. However, little is known about this dynamical regime, and how it may
influence observations. Therefore, we present a systematic study of hot
Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which
couples a three-dimensional general circulation model with a plane-parallel,
two-stream, non-grey radiative transfer model. In our study, we vary the
eccentricity and orbit-average stellar flux over a wide range. We demonstrate
that the eccentric hot Jupiter regime is qualitatively similar to that of
planets on circular orbits; the planets possess a superrotating equatorial jet
and exhibit large day-night temperature variations. We show that these
day-night heating variations induce momentum fluxes equatorward to maintain the
superrotating jet throughout its orbit. As the eccentricity and/or stellar flux
is increased, the superrotating jet strengthens and narrows, due to a smaller
Rossby deformation radius. For a select number of model integrations, we
generate full-orbit lightcurves and find that the timing of transit and
secondary eclipse viewed from Earth with respect to periapse and apoapse can
greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux
can lead or lag secondary eclipse depending on the geometry. For those planets
that have large day-night temperature variations and rapid rotation rates, we
find that the lightcurves exhibit "ringing" as the planet's hottest region
rotates in and out of view from Earth. These results can be used to explain
future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
On the chains of star complexes and superclouds in spiral arms
The relation is studied between occurrence of a regular chain of star
complexes and superclouds in a spiral arm, and other properties of the latter.
A regular string of star complexes is located in the north-western arm of M31;
they have about the same size 0.6 kpc with spacing of 1.1 kpc. Within the same
arm segment the regular magnetic field with the wavelength of 2.3 kpc was found
by Beck et al. (1989). We noted that this wavelength is twice as large as the
spacing between complexes and suggested that they were formed in result of
magneto-gravitational instability developed along the arm. In this NW arm, star
complexes are located inside the gas-dust lane, whilst in the south-western arm
of M31 the gas-dust lane is upstream of the bright and uniform stellar arm.
Earlier, evidence for the age gradient has been found in the SW arm. All these
are signatures of a spiral shock, which may be associated with unusually large
(for M31) pitch-angle of this SW arm segment. Such a shock may prevent the
formation of the regular magnetic field, which might explain the absence of
star complexes there. Anti-correlation between shock wave signatures and
presence of star complexes is observed in spiral arms of a few other galaxies.
Regular chains of star complexes and superclouds in spiral arms are rare, which
may imply that a rather specific mechanism is involved in their formation, and
the most probable one is the Parker-Jeans instability. The spiral pattern of
our Galaxy is briefly discussed; it may be of M101 type in the outer parts. The
regular bi-modal spacing of HI superclouds is found in Carina and Cygnus
(Outer) arms, which may be an indirect evidence for the regular magnetic field
along these arms.Comment: 20 pages, 12 figures, accepted for publication in MNRA
Epitaxial Growth Kinetics with Interacting Coherent Islands
The Stranski-Krastanov growth kinetics of undislocated (coherent)
3-dimensional islands is studied with a self-consistent mean field rate theory
that takes account of elastic interactions between the islands. The latter are
presumed to facilitate the detachment of atoms from the islands with a
consequent decrease in their average size. Semi-quantitative agreement with
experiment is found for the time evolution of the total island density and the
mean island size. When combined with scaling ideas, these results provide a
natural way to understand the often-observed initial increase and subsequent
decrease in the width of the coherent island size distribution.Comment: 4 pages, 4 figure
The influence of surface stress on the equilibrium shape of strained quantum dots
The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained
islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied
using a hybrid approach which combines density functional theory (DFT)
calculations of microscopic parameters, surface energies, and surface stresses
with elasticity theory for the long-range strain fields and strain relaxations.
In particular we report DFT calculations of the surface stresses and analyze
the influence of the strain on the surface energies of the various facets of
the quantum dot. The surface stresses have been neglected in previous studies.
Furthermore, the influence of edge energies on the island shapes is briefly
discussed. From the knowledge of the equilibrium shape of these islands, we
address the question whether experimentally observed quantum dots correspond to
thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998).
Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
- …
